
Sergiy Bogomolov

Abstraction-based Analysis of
Hybrid Automata

Dissertation

zur Erlangung des Doktorgrades

der Technischen Fakultät

der Albert-Ludwigs-Universität Freiburg

Tag der Disputation:
2. April 2015

Dekan:
Prof. Dr. Georg Lausen, Albert-Ludwigs-Universität Freiburg

Referenten:
Prof. Dr. Andreas Podelski, Albert-Ludwigs-Universität Freiburg
Prof. Dr. Radu Grosu, Technische Universität Wien
Prof. Dr. Christoph Scholl, Albert-Ludwigs-Universität Freiburg
Prof. Dr. Bernhard Nebel, Albert-Ludwigs-Universität Freiburg

Abstract

Hybrid automata are used to model systems with both discrete and con-
tinuous dynamics. A prototypical example is a thermostat which switches
between the modes “heating” and “cooling”. We present new methods to
construct and utilize abstractions for the analysis of hybrid automata. For
guiding the exploration of the region space of a hybrid automaton, we propose
distance functions which are based on abstractions of the original hybrid au-
tomaton and can be computed automatically. To analyze networks of hybrid
automata, we lift the notion of assume-guarantee abstraction refinement to
the class of hybrid automata. For this purpose, we introduce an abstraction
of a hybrid automaton which can efficiently shrink the discrete structure. In
order to apply symbolic reachability analysis to hybrid planning based on the
planning language PDDL+ as studied in Artificial Intelligence, we present
a semantics preserving translation of PDDL+ into a hybrid automaton. We
have implemented our methods as extensions to the symbolic hybrid model
checker SpaceEx. As the experiments show, our methods make it possible to
analyze hybrid automata which were out of scope of existing methods.

Zusammenfassung

Hybrid-Automaten werden dazu verwendet, Systeme zu modellieren, die
sowohl diskretes als auch kontinuerliches Verhalten aufweisen. Ein typisches
Beispiel für ein solches System ist ein Thermostat, der zwischen den Modi
“Heizen” and “Kühlen” wechselt. In dieser Arbeit stellen wir abstraktions-
basierte Verfahren zur symbolischen Analyse von Hybrid-Automaten vor. Um
das Explorieren des Zustandsraumes eines Hybrid-Automaten zu steuern,
schlagen wir Abstandsfunktionen vor, die auf Abstraktionen des ursprüng-
lichen Hybrid-Automaten beruhen und automatisch berechnet werden kön-
nen. Um Netzwerke von Hybrid-Automaten zu analysieren, erweitern wir das
Konzept von “Assume-Guarantee Abstraction Refinement” auf die Klasse
der Hybrid-Automaten. Zu diesem Zweck führen wir eine Abstraktion ein,
die die diskrete Struktur des Automaten effizient verkleinern kann. Weiter-
hin präsentieren wir eine semantik-erhaltende Übersetzung der Planungs-
spache PDDL+, die im Bereich der künstlichen Intelligenz untersucht wird, in
einen Hybrid-Automaten, um symbolische Erreichbarkeitsanalyse für Hand-
lungsplanung in hybriden Domänen anwenden zu können. Wir haben un-
sere Verfahren als Erweiterungen des symbolischen hybriden Modellprüfers
SpaceEx implementiert. Unsere Experimente zeigen, dass unsere Verfahren
es ermöglichen, Hybrid-Automaten zu analysieren, die mit existierenden Ver-
fahren bisher nicht analysiert werden konnten.

Acknowledgments

First and foremost, I would like to thank my supervisor Andreas Podelski for
guiding my research during all the years of my PhD studies. This thesis would
not have been possible without his support and encouragement. Andreas
taught me how to combine bold creativity and constructive criticism in order
to pose and tackle exciting scientific problems. His immense influence on my
style of research and generally on my attitude to life will last for many years
to come.

I thank Radu Grosu for a very productive collaboration over many years.
Radu’s vision of the area and its future developments has shaped my research
interests a lot and led to many fascinating projects.

I am grateful to Goran Frehse for introducing me to the world of the
SpaceEx model checker, insightful discussions and answering my numerous
questions. I owe a large part of my technical knowledge in the area of hybrid
automata to Goran.

I am thankful to Martin Wehrle for a fruitful collaboration in the area
of heuristics and planning which already resulted in many papers and hope-
fully will lead to even more papers in the future. Thanks to Martin I learnt
(or at least hope so) how to write briefly and succinctly. His friendly and
professional advice was invaluable at many different stages of my research.

I wish to thank Marius Greitschus for working together on reachability
analysis of hybrid automata. It was not easy to meet conference deadlines
sometimes; however, it is very nice to remember our joint pizzas and ham-
burgers in the days before deadlines. Marius’s deep knowledge of software
development was always instrumental in our projects.

I also wish to express my gratitude to Christian Schilling for our regular
discussions on hybrid automata which were always helpful and enjoyable.

I would like to thank my office colleague Corina Mitrohin for supporting
my first steps in the research of hybrid automata. I really enjoyed our dis-

X

cussions on all possible topics and can only wish everybody to have such an
office colleague.

Also, my thanks go to all the members of the Chair of Software Engineer-
ing at the University of Freiburg for a friendly and creative work environment.

Finally, I want to thank my family for their support. In particular, I am
grateful to my wife Eugenia and daughter Sophia for their patience and love.
I thank my parents Olga and Nikolai for all their help, belief in me and for
always being there whenever I needed them. I dedicate this thesis to my
family.

Contents

1 Introduction . 1
1.1 Abstractions for Hybrid Automata . 1
1.2 Proof of Concept . 3
1.3 Outline . 4

2 Preliminaries . 5
2.1 Hybrid Automaton . 5
2.2 Symbolic States Representation . 7

3 Guided Search for Hybrid Automata . 11
3.1 Preliminaries . 13

3.1.1 Guided Search . 13
3.1.2 General Framework of Pattern Databases 15

3.2 The Box-Based Distance Measure . 16
3.2.1 Order-Preserving Measures . 16
3.2.2 A Trajectory-Based Distance Measure 17
3.2.3 The Box-Based Approximation . 18

3.3 Pattern Databases for Hybrid Automata 20
3.3.1 Coarse-Grained Space Abstractions 21
3.3.2 Partial Pattern Databases . 22
3.3.3 Discussion . 24

3.4 Related Work . 25
3.5 Evaluation . 27

3.5.1 Results for Navigation Benchmarks 27
3.5.2 Results for Navigation Benchmarks with Additive

Vanishing Perturbation . 29
3.5.3 Results for Satellite Benchmarks . 30
3.5.4 Results for Water-Tank Benchmarks 33
3.5.5 Results for Heater Benchmarks . 37

XII Contents

3.5.6 Runtimes of Partial PDBs vs. Full PDBs 39
3.5.7 Discussion . 39

3.6 Conclusion . 40

4 Assume Guarantee Abstraction Refinement for Hybrid
Automata . 43
4.1 Compositional Framework for Hybrid Automata 46

4.1.1 Abstraction Algorithm . 46
4.1.2 Compositional Analysis . 48
4.1.3 Spuriousness Check . 49
4.1.4 Refinement Algorithm . 51

4.2 Related Work . 53
4.3 Evaluation . 54

4.3.1 Benchmarks . 54
4.3.2 Experiments . 55

4.4 Conclusion . 57

5 Hybrid Planning . 59
5.1 The PDDL+ Language . 60
5.2 Semantical Issues Raised by PDDL+ . 61
5.3 Modeling PDDL+ as Hybrid Automata . 63

5.3.1 Discrete Variable Automata . 63
5.3.2 Continuous Variable Automata . 64
5.3.3 Durative Action Automata . 64
5.3.4 Instantaneous Action Automata . 67
5.3.5 Event and Process Automata . 68
5.3.6 Overall Translation Scheme . 68

5.4 Case Study . 69
5.5 Conclusion . 71

6 Conclusion and Future Research . 73

References . 75

1

Introduction

1.1 Abstractions for Hybrid Automata

Nowadays, our life cannot be imagined without computers. In many areas,
e.g., in the automobile industry, incorrect behavior of a computer-assisted
system can cost human lives. Currently, engineers mostly rely on testing
paradigms in order to ensure that the system fulfills its intended purpose.
Unfortunately, the fact that no bugs have been found in a testing phase does
not guarantee their absence as the testing results rely only on a finite number
of tests. This situation is unsatisfactory and motivated the development of
a new research discipline called “Model Checking” [26]. The aim is to pro-
vide automatic techniques for checking system correctness: Given a model
M and a property ϕ, a model checking algorithm checks whether the relation
M |= ϕ holds, i.e., the model M satisfies the property ϕ. The distinguish-
ing feature of model checking is the fact that it can provide a mathematical
proof of the property satisfaction. However, it is usually necessary to ex-
haustively explore the system state space for this purpose. The state space
grows exponentially in the size of the system which can make model check-
ing of large systems computationally intractable. Therefore, big efforts have
been devoted [25, 12, 39] to ensuring the scalability of model checking ap-
proaches. In this thesis, we investigate model checking algorithms for models
M which belong to the class of hybrid automata. A hybrid automaton [1]
is a mathematical model which unifies the notions of a non-deterministic
finite automaton (NFA) [44] and continuous dynamical system [65]. More
formally, every location of an NFA is augmented with a system of differ-
ential equations which governs the state evolution of the hybrid automaton
in this particular location. On the one hand, this leads to a large expressive
power and thus makes hybrid automata an appropriate modelling framework
for a large range of application domains such as embedded systems [6] and

2 1 Introduction

systems biology [13]. On the other hand, the resulting complex system be-
havior requires careful handling to ensure that the analysis algorithms are
still computationally amenable.

Symbolic model checking techniques enable the analysis of infinite state
space systems by utilizing finite representations of sets of states in form of
constraints, binary decision diagrams, etc. We investigate symbolic model
checking techniques for hybrid automata. For this class of systems, sets of
states are represented by regions. In our research, we focus on methods for
symbolic reachability analysis, a subclass of symbolic model checking tech-
niques. In this setting, reachability of some given bad states is equivalent to
system malfunction.

We scale the reachability analysis by making a number of technical con-
tributions. They have in common a core ingredient: a model abstraction. In
other words, we consider a simplified version of the original system. Here,
the main idea is to automatically compute such an abstraction which pro-
vides enough information to reason about the given property ϕ, yet can be
analyzed in an efficient way. Therefore, an important research question is to
find a trade-off between the abstraction precision and the required analysis
time.

In the following, we give a short overview of the thesis contributions:

1. Guided Search for Hybrid Automata. A hybrid model checker like
SpaceEx [39] is typically optimized towards proving the absence of errors.
In some settings, e.g., when the verification tool is employed in a feedback-
directed design cycle, it is desirable to have an option to call a version
that is optimized towards finding an error trajectory in the region space.
A possible way to reach this goal is to employ guided search [34]. Guided
search relies on a cost function that indicates which states are promising
to be explored, and in the first instance explores more promising states
first.
We propose two abstraction-based cost functions [20, 18, 17]. The first one
works by approximating symbolic regions and measuring their distance to
the bad states. Here, we mainly take the continuous part of the state into
account. The second one is based on coarse-grained space abstractions for
guiding the reachability analysis. For this purpose, a suitable abstraction
technique that exploits the flexible granularity of modern reachability
analysis algorithms is introduced. The new cost function is an effective
extension of the pattern database approach [28] which was originally
developed in the scope of Artificial Intelligence.

2. Assume Guarantee Abstraction Refinement for Hybrid Au-
tomata. Compositional verification techniques in the assume-guarantee

1.2 Proof of Concept 3

style have been successfully applied to transition systems [57] to effi-
ciently reduce the search space by leveraging the compositional nature of
the systems under consideration. We adapt these techniques to the do-
main of hybrid automata with affine dynamics [19]. To build assumptions
we introduce an abstraction based on location merging. We integrate the
assume-guarantee style analysis with automatic abstraction refinement.

3. Hybrid Planning. Planning is an area of artificial intelligence which
studies the problem of finding a sequence of actions leading to a goal
state. Hybrid planning considers planning problems with actions which
exhibit continuous dynamics. Planning in hybrid domains is an important
and challenging task, and various planning algorithms [27, 66, 31] have
been proposed in the last years. From an abstract point of view, hybrid
planning domains are based on hybrid automata. However, despite the
quest for more scalable planning approaches, model checking algorithms
have not been applied to planning in hybrid domains so far. We note
that planning represents an instantiation of a falsification problem in a
specific problem domain. In particular, in the planning setting, we are
interested in reaching a goal state, whereas in the falsification setting we
are interested in detecting the paths towards a bad state. Still, the task
of exploring a system state space in an efficient manner towards a given
set of states stays the same.
We make a first step in bridging the gap between these two worlds.
We provide a formal translation scheme from PDDL+, a formalism to
describe planning domains, to the standard formalism of hybrid au-
tomata [21], as a solid basis for using hybrid automata model-checking
tools for dealing with hybrid planning domains. As a case study, we use
the SpaceEx model checker, showing how we can address PDDL+ do-
mains that are out of the scope of state-of-the-art planners.

1.2 Proof of Concept

All the techniques presented in this thesis have been implemented as exten-
sions of the hybrid model checker SpaceEx. The standard version of SpaceEx
can verify the safety of a given hybrid automaton. The analysis is based
on the symbolical representation of reachable regions. In order to evalu-
ate our approaches, we have considered a number of challenging hybrid au-
tomata benchmark models. The tools and the benchmarks can be found at
http://swt.informatik.uni-freiburg.de/tool/spaceex.

4 1 Introduction

1.3 Outline

Most of the contributions of the thesis have already been published. The
relevant papers are listed below:

[BDF+] Sergiy Bogomolov, Alexandre Donzé, Goran Frehse, Radu Grosu, Taylor T.
Johnson, Hamed Ladan, Andreas Podelski, and Martin Wehrle. Guided search
for hybrid systems based on coarse-grained space abstractions. Submitted to
International Journal on Software Tools for Technology Transfer (STTT).

[BDF+13] Sergiy Bogomolov, Alexandre Donzé, Goran Frehse, Radu Grosu, Taylor T.
Johnson, Hamed Ladan, Andreas Podelski, and Martin Wehrle. Abstraction-
based guided search for hybrid systems. In Model Checking Software (SPIN
2013), volume 7976 of LNCS, pages 117–134. Springer, 2013.

[BFG+12] Sergiy Bogomolov, Goran Frehse, Radu Grosu, Hamed Ladan, Andreas Podel-
ski, and Martin Wehrle. A box-based distance between regions for guiding the
reachability analysis of SpaceEx. In Computer Aided Verification (CAV 2012),
volume 7358 of LNCS, pages 479–494. Springer, 2012.

[BFG+14] Sergiy Bogomolov, Goran Frehse, Marius Greitschus, Radu Grosu, Corina S.
Pasareanu, Andreas Podelski, and Thomas Strump. Assume-guarantee ab-
straction refinement meets hybrid systems. In Haifa Verification Conference
(HVC 2014), volume 8855 of LNCS, pages 116–131. Springer, 2014.

[BMPW14] Sergiy Bogomolov, Daniele Magazzeni, Andreas Podelski, and Martin Wehrle.
Planning as model checking in hybrid domains. In AAAI Conference on Arti-
ficial Intelligence (AAAI 2014), pages 2228–2234. AAAI Press, 2014.

The thesis is organized as follows. In Chapter 2, we introduce the nec-
essary notions that we use throughout the thesis. Chapter 3 describes our
approaches to guide the search in the state space of a hybrid automaton. This
material has been presented at CAV’12 [BFG+12], SPIN’13 [BDF+13] and
STTT [BDF+]. Then, we present our assume guarantee framework in Chap-
ter 4 which is also published at HVC’14 [BFG+14]. Chapter 5 presents our
translation from PDDL+ to hybrid automata. This chapter is based on the
work presented at AAAI’14 [BMPW14]. Finally, in Chapter 6, we conclude
the thesis and discuss some possible lines of research for the future.

2

Preliminaries

In this chapter, we introduce the preliminaries that are needed for this the-
sis. In Section 2.1, we introduce hybrid automata and their semantics. In
Section 2.2, we discuss the symbolic reachability algorithms we use in our
work.

2.1 Hybrid Automaton

We consider models that can be represented by hybrid automata. A hybrid
automaton is formally defined as follows.

Definition 2.1 (Hybrid Automaton) A hybrid automaton is a tuple
H = (Loc,Var , Init ,Flow ,Trans, Inv) defining

• the finite set of locations Loc,
• the set of continuous variables Var = {x1, . . . , xn} from Rn,
• the initial condition, given by the constraint Init(`) ⊂ Rn for each loca-

tion `,
• for each location `, a relation called Flow(`) over the variables and their

derivative,
• the discrete transition relation, given by a set Trans of discrete transi-

tions; a discrete transition is formally defined as a tuple (`, g, ξ, `′) defin-
ing
– the source location ` and the target location `′,
– the guard, given by a linear constraint g,
– the update, given by an affine mapping ξ, and

• the invariant Inv(`) ⊂ Rn for each location `.

In this thesis, we consider Flow(l) to be continuous dynamics of the fol-
lowing two forms:

6 2 Preliminaries

1. If ẋ(t) ∈ P where P is a polytope, then the HA is called a linear hybrid
automaton (LHA).

2. If ẋ(t) = Ax(t)+u(t), u(t) ∈ U , where x(t) ∈ Rn, A is a real-valued n×n
matrix and U ⊆ Rn is a closed and bounded convex set, then the HA is
called an affine hybrid automaton (AHA).

The semantics of a hybrid automaton H is defined as follows. A state
of H is a tuple (`,x), which consists of a location ` ∈ Loc and a point
x ∈ Rn. More formally, x is a valuation of the continuous variables in Var .
For the following definitions, let T = [0, ∆] be an interval for some ∆ ≥ 0. A
trajectory of H from state s = (`,x) to state s′ = (`′,x′) is defined by a tuple
ρ = (L,X), where L : T → Loc and X : T → Rn are functions that define
for each time point in T the location and values of the continuous variables,
respectively. Furthermore, we will use the following terminology for a given
trajectory ρ. A sequence of time points where location switches happen in
ρ is denoted by (τi)i=0...k ∈ T k+1. In this case, we define the length of ρ as
|τ | = k. Trajectories ρ = (L,X) (and the corresponding sequence (τi)i=0...k)
have to satisfy the following conditions:

• τ0 = 0, τi < τi+1, and τk = ∆ – the sequence of switching points increases,
starts with 0 and ends with ∆

• L(0) = `, X(0) = x, L(∆) = `′, X(∆) = x′ – the trajectory starts in
s = (`,x) and ends in s′ = (`′,x′)

• ∀i ∀t ∈ [τi, τi+1) : L(t) = L(τi) – the location is not changed during the
continuous evolution

• ∀i ∀t ∈ [τi, τi+1) : (X(t), Ẋ(t)) ∈ Flow(L(τi)), i.e. Ẋ(t) = AX(t) + u(t)
holds and thus the continuous evolution is consistent with the differential
equations of the corresponding location

• ∀i ∀t ∈ [τi, τi+1) : X(t) ∈ Inv(L(τi)) – the continuous evolution is consis-
tent with the corresponding invariants

• ∀i ∃(L(τi), g, ξ, L(τi+1)) ∈ Trans : Xend(i) = lim
τ→τ−i+1

X(τ) ∧Xend(i) ∈
g∧X(τi+1) = ξ(Xend(i)) – every continuous transition is followed by a dis-
crete one, Xend(i) defines the values of continuous variables right before
the discrete transition at the time moment τi+1 whereas Xstart(i) = X(τi)
denotes the values of continuous variables right after the switch at the
time moment τi.

A state s′ is reachable from state s if there exists a trajectory from s to
s′.

In the following, we mostly refer to symbolic states. A symbolic state
s = (`,R) is defined as a tuple, where ` ∈ Loc, andR is a convex and bounded
set consisting of points x ∈ Rn. The continuous part R of a symbolic state is

2.2 Symbolic States Representation 7

also called region. The symbolic state space of H is called the region space.
The initial set of states Sinit of H is defined as

⋃
`(`, Init(`)). The reachable

state space Reach(H) of H is defined as the set of symbolic states that are
reachable from an initial state in Sinit , where the definition of reachability is
extended accordingly for symbolic states.

A network N = {H1, . . . ,Hm} of hybrid automata is a set of hybrid
automata. The semantics of N is defined based on the semantics of single
hybrid automata, with the following extensions. Every automaton in N is
associated with a finite set of synchronization labels, including a special la-
bel τ in all label sets. The discrete component of a state s of N is defined as
a vector of locations that denotes the current locations of every component
in N . Similarly, in addition to single automata, a trajectory of N maps time
points to vectors of locations of each automaton. For a time point t, changes
in the location vectors in a trajectory can either be caused by a single tran-
sition labelled with τ of one automaton in N (“interleaving transition”), or
there there are several automata in N that simultaneously fire transitions
with equal synchronization label 6= τ (“synchronized transition”). We refer
to the work by Donzé et al. [32]

In this thesis, we assume there is a given set of symbolic bad states Sbad

that violate a given property. Our goal is to find a sequence of symbolic
states which contains a trajectory from Sinit to a symbolic error state, where
a symbolic error state se has the property that there is a symbolic bad
state in Sbad that agrees with se on the discrete part, and that has a non-
empty intersection with se on the continuous part. A trajectory that starts
in a symbolic state s and leads to a symbolic error state is called an error
trajectory ρe(s).

2.2 Symbolic States Representation

The representation of symbolic states plays a crucial role for the reachability
analysis of hybrid automata. As outlined in the previous section, a symbolic
state consists of a discrete location and a continuous region. The handling of
continuous regions within the reachability analysis poses a special challenge
as a number of operations on polyhedra (such as linear maps, Minkowski
sum, and convex hull computation) need to be performed efficiently in prac-
tice. The LGG scenario [54] which is implemented in SpaceEx [39] relies on
two main ingredients for this purpose: support functions [14] and template
polyhedra. In the following, we will describe them in more detail. Note that
the support function representation is currently applicable only to affine hy-
brid automata. However, we can still apply the LGG scenario to multiaffine
hybrid automata by approximating their dynamics (see Chapter 3).

8 2 Preliminaries

Fig. 2.1: Region represen-
tation using box directions

Fig. 2.2: Region represen-
tation using octagonal di-
rections

The support function ρR(`) of a region R with respect to the direction
` ∈ Rn is defined as follows:

ρR(`) = max
x∈R

` · x

We can represent an arbitrary convex closed set R by using support func-
tions in the following way:

R =
⋂
`∈Rn

{x | ` · x ≤ ρR(`)}

The representation based on support functions allows for efficiently com-
puting all the above mentioned polyhedra operations, hence reachability al-
gorithms in turn benefit from this representation.

As the consideration of an infinite number of directions is clearly infea-
sible from the computational point of view, SpaceEx also makes use of a
continuous set representation derived from the support functions: template
polyhedra. In this setting, we predefine from the very beginning a set of di-
rections taken into account in course of the reachability analysis. In other
words, a user provides a set of directions D = {`1, . . . , `m} used for the reach-
ability analysis. Based on D, the region R can be over-approximated by the
following polyhedron:

RD = {x ∈ Rn |
∧
`i∈D

`i · x ≤ ρR(`i)}

SpaceEx supports a number of predefined direction sets such as, e.g.,
box directions (directions parallel to axes; see Figure 2.1) and octagonal
directions (the union of directions parallel to axes and diagonal ones; see

2.2 Symbolic States Representation 9

Figure 2.2). Obviously, by increasing the number of considered directions,
we can improve the approximation precision.

In the rest of this section, we briefly recapitulate the computation of
continuous successors for a given symbolic state, i.e. the states which are
reachable according to the continuous dynamics. As the continuous post
operator does not change the discrete part of a symbolic state, we consider
only the continuous region of a symbolic state.

The LGG scenario computes the continuous successors only for a finite
time horizon. Therefore, we use a time bounded version of the reachable
region Reacht1,t2(R) for a given starting region R ⊆ Rn, dynamics ẋ(t) =
Ax(t) + u(t), u(t) ∈ U (*) and a time interval [t1, t2] ⊆ R≥0:

Reacht1,t2(R) = {x(τ) | t1 ≤ τ ≤ t2, x(0) ∈ R,
x(τ) is the solution of (*)}

SpaceEx performs an over-approximating time-bounded reachability anal-
ysis of Reach0,T (R), where T ∈ R≥0 is a user-provided time horizon. In more
detail, as the reachability analysis of hybrid automata is generally undecid-
able, SpaceEx over-approximates the successor regions by iteratively com-
puting over-approximations based on discretizing the time up to the time
horizon: First, the time interval [0, T] is partitioned in a number of small time
intervals [δi, δi+1], where δi = i ·Tδ (i = 0, . . . , N−1) and Tδ = T/N (N ∈ N)
is a user provided sampling time. Second, given this partitioning, SpaceEx
covers the exact reachability set with the sequence Ωi ⊆ Rn, i = 0, . . . , N−1
where Ωi defines the over-approximation of the states reachable within the
time interval [δi, δi+1]. In other words, the following inclusion holds:

Reach0,T (Init) ⊆
N−1⋃
i=0

Ωi

The set Ωi+1 can be expressed in terms of the “predecessor set” Ωi by
using a linear map and Minkowski sum. Therefore, we only need to provide
a routine to compute Ω0 which in turn can be done in two steps. First, we
compute the convex hull of the union of the region R and its image at the
moment Tδ. Second, we observe that the continuous dynamics non-linearities
can lead to some reachable states being outside of the computed convex hull.
In order to account for this phenomena, we bloat the resulting convex hull to
ensure the over-approximation. Clearly, a larger sampling time Tδ makes a
possibly larger bloating necessary, which worsens the approximation precision
(see Figure 2.3 and Figure 2.4 for a comparison).

10 2 Preliminaries

Fig. 2.3: Region representation using
a large sampling time

Fig. 2.4: Region representation using
a small sampling time

To summarize, we observe that the adjustment of the template directions
used in the support function representation and the sampling time in the
continuous post operator crucially impacts the precision, i.e. the abstraction
level, of the symbolic state representation. Clearly, an improved precision
leads to an increased analysis time on the downside. Based on this repre-
sentation, we will present an algorithm which leverages different abstraction
levels to efficiently explore the region space.

3

Guided Search for Hybrid Automata

Guided search is an approach that has recently attracted much attention for
finding errors in large systems [51]. As suggested by the name, guided search
performs a search in the state space of a given system. In contrast to standard
search methods like breadth-first or depth-first search, the search is guided
by a cost function that estimates the search effort to reach an error state
from the current state. This information is exploited by preferably exploring
states with lower estimated costs. If accurate cost functions are applied, the
search effort can significantly be reduced compared to uninformed search.
Obviously, the cost function therefore plays a key role within the setting of
guided search, as it should be as accurate as possible on the one hand, and
as cheap to compute as possible on the other. Cost functions that have been
proposed in the literature are mostly based on abstractions of the original
system. An important class of abstraction-based cost functions is based on
pattern databases (PDBs). PDBs have originally been proposed in the area of
Artificial Intelligence [28] and also have successfully been applied to model
checking discrete and timed systems [63, 50, 51, 69]. Roughly speaking, a
PDB is a data structure that contains abstract states together with abstract
cost values based on an abstraction of the original system. During the con-
crete search, concrete states s are mapped to corresponding abstract states
in the PDB, and the corresponding abstract cost values are used to estimate
the costs of s. Overall, PDBs have demonstrated to be powerful for finding
errors in different formalisms. The open question is if guided search can be
applied equally successfully to finding errors in hybrid automata.

In this chapter, we first describe the box-based distance measure [20] to
estimate the cost of a symbolic state based on the Euclidean distance from
its continuous part to a given set of error states. This approach appears
to be best suited for systems whose behavior is strongly influenced by the
(continuous) differential equations. However, it suffers from the fact that dis-

12 3 Guided Search for Hybrid Automata

crete information like mode switches is completely ignored, which can lead
to arbitrary degeneration of the search. To see this, consider the example
presented in Figure 3.1. It shows a simple hybrid automaton with one con-
tinuous variable which obeys the differential equation ẋ = 1 in every location
(differential equations are omitted in the figure). The error states are given
by the locations le1, . . . , len and invariants 0 ≤ x ≤ 8. In this example, the
box-based distance heuristic wrongly explores the whole lower branch first
(where no error state is reachable) because it only relies on the continuous
information given by the invariants. More precisely, for the box-based dis-
tance heuristic, the invariants suggest that the costs of the “lower” states
are equal to 0, whereas the costs of the “upper” states are estimated to be
equal to 4 (i. e., equal to the distance of the centers of the bounding boxes
of the invariants).

l1

l2 l3 le1 . . . len

l4 l5 l6 . . . ln

0 ≤ x ≤ 0 0 ≤ x ≤ 0 0 ≤ x ≤ 8 0 ≤ x ≤ 8

0 ≤ x ≤ 8 0 ≤ x ≤ 8 0 ≤ x ≤ 8 0 ≤ x ≤ 8

Fig. 3.1: A motivating example

To overcome these limitations, we furthermore introduce an abstraction-
based cost function for hybrid systems [18, 17] which is motivated by PDBs.
In contrast to the box-based approach based on Euclidean distances, this
cost function is able to properly reflect the discrete part of the system. Com-
pared to the “classical” discrete setting, the investigation of PDBs for hybrid
automata becomes more difficult for several reasons. First, hybrid automata
typically feature both discrete and continuous variables with complex de-
pendencies and interactions. Therefore, the question arises how to compute
a suitable (accurate) abstraction of the original system. Second, computa-
tions for symbolic successors and inclusion checks become more expensive
than for discrete or timed systems – can these computations be performed
or approximated efficiently to get an overall efficient PDB approach as well?
In this chapter, we provide answers to these questions, leading to an efficient
guided search approach for hybrid systems. In particular, we introduce an
abstraction technique leveraging properties of the set representations used in
modern reachability algorithms. By simply using coarser parameters for the
explicit representation, we obtain suitable and cheap coarse-grained space

3.1 Preliminaries 13

abstractions for the behaviors of a given hybrid automaton. Furthermore,
we adapt the idea of partial PDBs, which has been originally proposed for
solving discrete search problems [8], to the setting of hybrid automata in
order to reduce the size and computation time of “classical” PDBs. Our
implementation in the SpaceEx tool [39] shows the practical potential.

The remainder of the chapter is organized as follows. After introducing the
necessary background for this work in Section 3.1, we present our box-based
distance measure in Section 3.2 and PDB approach for hybrid systems in
Section 3.3. This is followed by a discussion about related work in Section 3.4.
Afterwards, we present our experimental evaluation in Section 3.5. Finally,
we conclude the chapter in Section 3.6.

3.1 Preliminaries

We discuss the basic framework of the guided search in Section 3.1.1. Further-
more, we introduce the ideas behind the pattern databases in Section 3.1.2.

3.1.1 Guided Search

In this section, we introduce a guided search algorithm (Algorithm 1) along
the lines of the reachability algorithm used by the current version of SpaceEx
[39]. It works on the region space of a given hybrid automaton. The algorithm
checks if a symbolic error state is reachable from a given set of initial symbolic
states Sinit . As outlined above, we define a symbolic state se in the region
space of H to be a symbolic error state if there is a symbolic state s ∈ Sbad

such that s and se agree on their discrete part, and the intersection of the
regions of s and se is not empty (in other words, the error states are defined
with respect to the given set of bad states). Starting with the set of initial
symbolic states from Sinit , the algorithm explores the region space of a given
hybrid automaton by iteratively computing symbolic successor states until
an error state is found, no more states remain to be considered, or a (given)
maximum number of iterations imax is reached. The exploration of the region
space is guided by the cost function such that symbolic states with lower cost
values are considered first.

In the following, we provide a conceptual description of the algorithm
using the following terminology. A symbolic state s′ is called a symbolic suc-
cessor state of a symbolic state s if s′ is obtained from s by first computing
the continuous successor of s (according to iteratively over-approximating the
successor regions of s with sets Ωi as described in the previous section), and
then by computing a discrete successor state of the resulting (intermediate)

14 3 Guided Search for Hybrid Automata

Algorithm 1 A guided symbolic reachability algorithm

Input: Set of initial symbolic states Sinit , set of symbolic bad states Sbad , cost function
cost

Output: Can a symbolic error state be reached from a symbolic state in Sinit ?
1: compute cost(s) for all s ∈ Sinit
2: Push (Lwaiting , {(s, cost(s)) | s ∈ Sinit})
3: i := 0
4: while (Lwaiting 6= ∅ ∧ i < imax) do
5: scurr := GetNext (Lwaiting)
6: i := i+ 1
7: s′curr := continuousSuccessor(scurr)
8: if s′curr is a symbolic error state then
9: return “Error state reached”

10: end if
11: Push (Lpassed , s

′
curr)

12: S′ := discreteSuccessors(s′curr)
13: for all s′ ∈ S′ do
14: if s′ /∈ Lpassed then
15: compute cost(s′)
16: Push (Lwaiting , (s

′, cost(s′)))
17: end if
18: end for
19: end while
20: if i = imax then
21: return “Maximal number of iterations reached”
22: else
23: return “Error state not reachable”
24: end if

state. Therefore, for a given symbolic state scurr , the function continuous-
Successor (line 7) returns a symbolic state which is an over-approximation
of the symbolic state reachable from scurr within the given time horizon
according to the continuous evolution. Accordingly, the function discrete-
Successors (line 12) returns the symbolic states that are reachable due to
the outgoing discrete transitions.

A symbolic state s is called explored if its symbolic successor states have
been computed. A symbolic state s is called visited if s has been computed
but not yet necessarily explored. To handle encountered states, the algorithm
maintains the data structures Lpassed and Lwaiting . Lpassed is a list containing
symbolic states that are already explored; this list is used to avoid exploring
cycles in the region space. Lwaiting is a priority queue that contains visited
symbolic states together with their cost values that are candidates to be
explored next. The algorithm is initialized by computing the cost values
for the initial symbolic states and pushing them accordingly into Lwaiting

(lines 1 – 2). The main loop iteratively considers a best symbolic state scurr

3.1 Preliminaries 15

from Lwaiting according to the cost function (line 5), computes its symbolic
continuous successor state s′curr (line 7), and checks if s′curr is a symbolic
error state (lines 8 – 10). (Recall that s′curr is defined as a symbolic error
state if there is a symbolic bad state s ∈ Sbad such that s and s′curr agree on
their discrete part, and the intersection of the regions of s and s′curr is not
empty.) If this is the case, the algorithm terminates. If this is not the case,
then s′curr is pushed into Lpassed (line 11). Finally, for the resulting symbolic
state s′curr , the symbolic discrete successor states are computed, prioritized
and pushed into Lwaiting if they have not been considered before (lines 12
– 18). As a side remark, if a successor state s′ = 〈l,R〉 is not contained in
Lpassed (line 14), but instead there is a symbolic state s′′ = 〈l,R′〉 ∈ Lpassed

with R ⊂ R′, then s′ is discarded as well because all transitions enabled in s′

have already been enabled in s′′ which is already explored. Finally, the check
if the given maximal number of iterations has been reached (line 4 and line
20) ensures termination, which would not be generally guaranteed otherwise
(e. g., because of Zeno behavior).

Obviously, the search behavior of Algorithm 1 is crucially determined
by the cost function that is applied. In the next section, we give a generic
description of pattern database cost functions.

3.1.2 General Framework of Pattern Databases

For a given system S, a pattern database (PDB) in the classical sense (i. e.,
in the sense PDBs have been considered for discrete and timed systems)
is represented as a table-like data structure that contains abstract states
together with abstract cost values. The PDB is used as a cost estimation
function by mapping concrete states s to corresponding abstract states s#

in the PDB, and using the abstract cost value of s# as an estimation of the
cost value of s. The computation of a classical PDB is performed in three
steps. First, a subset P of variables and automata of the original system
S is selected. Such subsets P are called pattern. Second, based on P, an
abstraction S# is computed that only keeps the variables occurring in P.
Third, the entire state space of S# is computed and stored in the PDB.
More precisely, all reachable abstract states together with their abstract cost
values are enumerated and stored. The abstract cost value for an abstract
state is defined as the shortest length of a trajectory from that state to an
abstract error state. The resulting PDB of these three steps is used as the
cost function during the execution of Algorithm 1; in other words, the PDB
is computed prior to the actual model checking process, where the resulting
PDB is used as an input for Algorithm 1.

16 3 Guided Search for Hybrid Automata

A straight-forward adaptation of such classical PDBs to the area of hybrid
automata is the following. For a given hybrid automaton H, compute an
abstract system H# as the basis for the PDB, where H# is obtained from
H by removing some of the variables in H (the pattern corresponds to the
remaining variables in H#). Based on H#, the PDB is represented by a
data structure that contains abstract states together with corresponding cost
values. The abstract states and cost values are obtained by a region space
exploration of H#. The abstract cost value of an abstract state s# is defined
as the length of a shortest found trajectory in H# from s# to an abstract
error state. The PDB computes the cost function

costP (s) := cost#(s#),

where s is a symbolic state, s# is a corresponding abstract state to s in the
PDB, and cost# is the length of the corresponding trajectory from s# to an
abstract error state as defined above.

3.2 The Box-Based Distance Measure

In this section, we present the box-based heuristic. Section 3.2.1 discusses the
idea of order-preserving measures. In Section 3.2.2, we provide a conceptual
description of an idealized distance measure based on the length of trajecto-
ries. This idealized distance measure is used as the basis for our box-based
distance measure which is presented in Section 3.2.3.

3.2.1 Order-Preserving Measures

In the following, we discuss a desirable property of cost measures in the
context of guided search. As already outlined, we intend to design a cost
measure that guides the search well in the region space. To achieve good
guidance, the relative error of a cost measure h to the cost function as defined
in the previous section is not necessarily correlated to the accuracy of h. In
other words, h may accurately guide the search although the relative error of
h’s cost estimations is high. This is because it suffices for h to always select
the “right” state to be explored next.1 Based on this observation, we give
the definition of order-preserving.

1 As a simple example, consider two states s and s′ with real costs 100 and 200, respec-
tively. Furthermore, consider a cost measure that estimates the costs of these states as
1 and 2, respectively. We observe that the relative error is high, but the better state is
determined nevertheless.

3.2 The Box-Based Distance Measure 17

Definition 3.1 (Order-Preserving). Let H be a hybrid automaton. A cost
measure h is order-preserving if for all states s and s′ with cost(s) < cost(s′),
then also h(s) < h(s′).

Cost measures that are order-preserving lead to perfect search behavior
with respect to the cost function. Therefore, it is desirable to have cost
measures that satisfy this property. We will come back to this point in the
next section.

3.2.2 A Trajectory-Based Distance Measure

In this section, we formulate a distance measure dist that can be expressed
in terms of the length of trajectories (see below for a justification of the
name). For states s and s′, the distance measure dist(s, s′) is defined as the
minimal length of a trajectory ρ that is obtained from the continuous flow
and discrete switches of trajectories that lead from s to s′. To define this more
formally, we denote the set of trajectories that lead from s to s′ with T (s, s′).
Moreover, disteq(x,x

′) denotes the Euclidean distance between points x and
x′. Using this notation, we give the definition of our trajectory-based distance
measure.

Definition 3.2 (Trajectory-Based Distance Measure). Let H be a hy-
brid automaton, let s and s′ be states of H. We define the distance measure

dist(s, s′) := min
ρ∈T (s,s′)

|τ |−1∑
i=0

(∫ τi+1

τi

√
ẋ2

1(t) + · · ·+ ẋ2
n(t) dt+ disteq(i, i+ 1)

)
,

where ρ = (L,X), X(t) = (x1(t), . . . , xn(t)), and disteq(i, i + 1) is a short-
hand for disteq(Xend(i),Xstart(i+ 1)).

Informally speaking, the distance between states s and s′ is defined as
the length of a shortest trajectory ρ from s to s′ induced by the differential
equations and discrete updates of the visited locations L(τi) in ρ. Obviously,
the trajectory-based distance measure can be applied to error states in a
straight-forward way by setting s′ to an error state. We call the trajectory-
based error distance measure distE(s) := minse dist(s, se), where se ranges
over the set of given error states of H.

In the following, we show that for a certain class of hybrid automata H,
dist(s) is indeed correlated to the costs of s for all states s of H. In fact, this
correlation can be established for hybrid automata such that

1. all differential equations in H are of the form ẋi(t) = ±ci for every con-
tinuous variable xi ∈ Var and a constant ci ∈ N, and

18 3 Guided Search for Hybrid Automata

2. all guards in H do not contain discrete updates.

We call hybrid automata that satisfy the above requirements restricted
automata. Specifically, we observe that a necessary condition for hybrid au-
tomaton H to be a restricted automaton is that for every continuous variable
xi in H, there is a global constant ci ∈ N such that all differential equations
in H that talk about xi only differ in the sign. It is not difficult to see that
for the class of restricted automata, the length of the obtained flow is lin-
early correlated with the time. Therefore, the error distance measure distE
is order-preserving.

Proposition 3.3. For restricted automata H, distE is order-preserving.

Proof. We show that from cost(s) < cost(s′), it follows that distE(s) <
distE(s′). As H is a restricted automaton, the square root of ẋ2

1(t) + · · · +
ẋ2
n(t) is constant and disteq(i, i + 1) is equal to zero. Thus, distE(s) =

minse minρ∈T (s,se) c
∑
δi, which is equal to c · cost(s). This proves the claim.

Proposition 3.3 leads to an interesting and important observation. Roughly
speaking, we have reduced the problem of computing (dwell time) costs in
the state space to the problem of computing “shortest” flows between re-
gions. Therefore, Proposition 3.3 shows that under certain circumstances,
we can choose between cost and dist without loosing precision. However, al-
though still hard to compute, the representation of dist based on lengths of
flows lends itself to an approximation based on estimated flow lengths. This
approximation is presented in the next section.

3.2.3 The Box-Based Approximation

In the following, we propose an effective approximation of the dist function
that we have derived in the last section. While the dist measure has been de-
fined for concrete states, our box-based approximation is defined for symbolic
states. The approximation is based on the following two ingredients.

1. Instead of computing the exact length of trajectories between two points
x and x′ (as required in Definition 3.2), we use the Euclidean distance
between x and x′.

2. As we are working in the region space, we approximate a given region R
with the smallest box B such that R is contained in B. This corresponds
to the well-known principle of Cartesian abstraction.

In the following, we will discuss these ideas and make them precise. As
stated, we define the estimated distance between points x and x′ as the

3.2 The Box-Based Distance Measure 19

Euclidean distance between x and x′. Unfortunately, the Euclidean dis-
tance is not order-preserving for restricted automata, but only for even
more restricted automata that allow even less behavior. This is formalized
in the following proposition. For a state s = (`,x), we define disteqE (s) :=
minse disteq(x,xe), where se = (`e,xe) ranges over the error states, and disteq
is the Euclidean distance function as introduced earlier.

Proposition 3.4. For restricted automata H with ẋi(t) = ci, i. e., for re-
stricted automata where all locations have the same continuous behavior,
disteqE is order-preserving.

Proof. We show that from cost(s) < cost(s′), it follows that disteqE (s) <
disteqE (s′). By assumption, H is a restricted automaton where every lo-
cation has the same continuous dynamics. Therefore, the Euclidean dis-
tance disteq(s, se) is equal to

∫ τk
0

√
ẋ2

1(t) + · · ·+ ẋ2
n(t) dt, where τk is equal

to the accumulated dwell time of the trajectory from s to se. Further-
more, the square root of ẋ2

1(t) + · · · + ẋ2
n(t) is some constant c. Thus

disteqE (s) = minse disteq(s, se) = minse c · τk = c · minse τk which in turn
is equal to c · cost(s).

The above proposition reflects that the Euclidean distance is a coarse ap-
proximation of the trajectory-based distance measure because it is effectively
only order-preserving for automata that allow behavior that corresponds to
automata with only one location. Indeed, it is the coarsest approximation one
can think of on the one hand. However, on the other hand, we have shown
that there exist automata for which it is order-preserving, which suggests
(together with Proposition 3.3) that the Euclidean distance could be a good
heuristic to estimate distances also for richer classes of hybrid automata.
Moreover, it is efficiently computable which is particularly important for
distance heuristics that are computed on-the-fly during the state space ex-
ploration. Obviously, one can think of arbitrary more precise approximations
based on piecewise linear functions. However, such approximations also be-
come more expensive to compute.

For our distance heuristic, we approximate a given symbolic state s =
(`, R) with the smallest box B(s) that contains R. Formally, this corresponds
to the requirement

R ⊆ B(s) = [x1, x
′
1]× . . .× [xn, x

′
n] ⊆ Rn ∧∀B′ 6= B(s) : R ⊆ B′ ⇒ B(s) ⊆ B′.

To be efficiently computable, it is essential that tight over-approximating
boxes can be computed efficiently. This can be achieved using linear pro-
gramming techniques. Our distance heuristic heq is defined as the Euclidean

20 3 Guided Search for Hybrid Automata

distance between the center of two boxes. Formally, for a symbolic state
s = (`, R), we define

heq(s) := min
se

disteq(Center(B(R)),Center(B(Re))),

where se = (`e, Re) ranges over the set of error states of H, disteq is the
Euclidean distance metric, and Center(B) denotes the central point of box
B. Obviously, central points of boxes can be computed efficiently as the
arithmetic average of its lower and upper bounds for every dimension.

Overall, our distance heuristic heq determines distance estimations for
symbolic states s = (`, R) by first over-approximating R with the smallest
box B that contains R, and then computing the minimal Euclidean distance
between B’s center and the center of an error state. This procedure is summed
up by Alg. 2.

Algorithm 2 Compute Distance Heuristic heq

Input: State s = (`, R)
Output: Estimated distance to a closest error state in Serror

1: dmin ←∞
2: B ← B(R)
3: for all s′ = (`′, R′) ∈ Serror do
4: B′ ← B(R′)
5: dcurr ← disteq(Center(B),Center(B′))
6: if dcurr < dmin then
7: dmin ← dcurr
8: end if
9: end for

10: return dmin

3.3 Pattern Databases for Hybrid Automata

In Section 3.1.2, we have described the general approach for computing and
using a PDB for guiding the search. However, for hybrid automata, there
are several challenges using the classical PDB approach. First, it is not clear
how to effectively design and compute suitable abstractions H# for hybrid
automata H with complex variable dependencies. Second, in Section 3.3.2,
we address the general problem that the precomputation of a PDB is often
quite expensive, where in many cases, only a small fraction of the PDB
is actually needed for the search [43]. This is undesirable in general, and
specifically becomes problematic in the context of hybrid automata because
the reachability analysis in hybrid automata is typically much more expensive

3.3 Pattern Databases for Hybrid Automata 21

than, e. g., for discrete systems. In Section 3.3.2, we introduce a variant of
partial PDBs for hybrid automata to address these problems.

3.3.1 Coarse-Grained Space Abstractions

A general question in the context of PDBs is how to compute suitable ab-
stractions of a given system. In particular, for hybrid automata where vari-
ables often have rather complex dependencies, projection abstractions based
on removing variables (as done for classical PDBs) can be too coarse to
achieve accurate heuristics. In this chapter, we propose a simple, yet ele-
gant alternative to the classical PDB approach to obtain a coarse grained
and fast analysis: As described in Section 2.2, the LeGuernic-Girard (LGG)
algorithm implemented in SpaceEx [39] uses support function representa-
tion (based on the chosen set of template directions) to compute and store
over-approximations of the reachable states. Therefore, a reduced number
of template directions and an increased sampling time results in an abstrac-
tion of the original region space in the sense that the dependency graph of
the reachable abstract symbolic states is a discrete abstraction of the au-
tomaton. The granularity of the resulting abstraction is directly correlated
with the parameter selection: Choosing coarser parameters (fewer template
directions, larger sampling time) in the reachability algorithm makes this ab-
straction coarser, whereas finer parameters lead to finer abstractions as well.
In more detail, for a given set of template directions D and sampling time N ,
a subset D′ ⊂ D and a larger sampling time N ′ > N induce coarse-grained
space abstractions with respect to the abstractions obtained by D and N :
the over-approximation of regions based on D′ and N ′ are coarser than for
D and N . As an example for template directions, consider again Figure 2.1
and Figure 2.2: the set of box directions in Figure 2.1 is a coarse-grained
space abstraction of the set of octagonal directions in Figure 2.2. Similarly,
as an example for the sampling time, consider again Figure 2.3 and Fig-
ure 2.4, where Figure 2.3 shows a coarse-grained space abstraction based on
increased sampling time of the regions in Figure 2.4.

In the following, we apply coarse-grained space abstractions to obtain
abstractions as the basis for pattern databases. This is a significant differ-
ence compared to classical PDB approaches (see Section 3.1.2): Instead of
computing an explicit (projection) abstraction H# based on a subset of all
variables, we keep all variables (and hence, the original automaton H), and
instead choose a coarser exploration of the abstract region space of H to
obtain the abstraction used for the PDB. (In practice, we apply unguided
search provided by SpaceEx to compute this coarser abstraction.) As an ad-

22 3 Guided Search for Hybrid Automata

ditional difference to classical PDBs, we will apply a variant of partial PDBs,
which are introduced in the next section.

3.3.2 Partial Pattern Databases

As already outlined, a general drawback of classical PDBs is the fact that
their precomputation might become quite expensive. Even worse, in many
cases, most of this precomputation time is often unnecessary because only a
small fraction of the PDB is actually needed during the symbolic search in
the region space [43]. One way that has been proposed in the literature to
overcome this problem is to compute the PDB on demand: So-called switch-
back search maintains a family of abstractions with increasing granularity;
these abstractions are used to compute the PDB to guide the search in the
next-finer level [53].

In the following, we apply a variant of partial PDBs [8] based on coarse-
grained space abstractions to address this problem: Instead of computing the
whole abstract region space for a given abstraction, we restrict the abstract
search to explore only a fraction of the abstract region space while focusing
on those abstract states that are likely to be sufficient for the concrete search.
In the following definition, we call an abstract state s# corresponding to state
s if s and s# agree on their discrete part, the region of s is included in region
of s#, and s# is an abstract state with minimal abstract costs that satisfies
these requirements.

Definition 3.5 (Partial Pattern Database) Let H be a hybrid automa-
ton. A partial pattern database for H is a pattern database for H that con-
tains only abstract state/cost value pairs for abstract states that are part of
some trajectory of shortest length (in terms of number of location switches)
from an initial state to some abstract error state. The partial pattern database
computes the function

costPP (s) :=

{
cost#(s#) if ex. corresponding s# to s
+∞ otherwise

where s, s#, and cost# are defined as above, and +∞ is a default value
indicating that no corresponding abstract state to s exists.

Informally, a partial PDB for a hybrid automaton H exactly contains
those abstract states that are explored on some shortest trajectory (instead
of containing all abstract states of a complete abstract region space explo-
ration to all abstract error states as it would be the case for a classical PDB).
In other words, partial PDBs are incomplete in the sense that there might

3.3 Pattern Databases for Hybrid Automata 23

exist concrete states, but the corresponding abstract states are not contained
the PDB. In such cases, the default value +∞ is returned with the inten-
tion that corresponding concrete states are only explored if no other states
are available. Obviously, this might worsen the overall search guidance com-
pared to the fully computed PDB. However, in special cases, a partial PDB
is already sufficient to obtain the same cost function as obtained with the
original PDB or even obtained with a perfect cost function (that allows for
exploring the region space without backtracking to find an error state). For
example, this is the case when only abstract states are excluded from which
no abstract error state is reachable anyway. More generally, under the ide-
alized assumption that the abstraction is fine enough such that no spurious
behavior occurs on shortest possible error trajectories, the partial PDB al-
ready delivers the same search behavior as a perfect search algorithm that
finds an error trajectory without backtracking.

Proposition 3.6. Let H be a hybrid automaton. Let n ∈ N0 be the length
of a shortest concrete error trajectory. If all shortest abstract error trajecto-
ries in H (obtained by a coarse-grained space abstraction to build a pattern
database) correspond to concrete error trajectories of the same length, then
guided search with Algorithm 1 and costPP finds an error trajectory after n
steps.

Proof. By construction, the partial PDB contains exactly those symbolic
abstract states that are part of shortest possible error trajectories. By as-
sumption, these abstract states correspond to concrete states on concrete
error trajectories of the same length. Hence, for every concrete state s on a
shortest error trajectory, there is a corresponding entry in the partial PDB
for all concrete successor states s′ of s that are part of a shortest concrete
error trajectory, and costPP (s′) = costPP (s)− 1. In addition, for all concrete
successor states s′′ that are not part of a shortest concrete error trajectory,
costPP (s′′) =∞. Overall, the claim follows by an inductive argument: Let s0

be an initial state such that costPP (s0) = n is minimal among the costs of
all initial states, i. e., n is the length of a shortest concrete error trajectory.
Furthermore, all concrete states on a shortest concrete error trajectory have
a concrete successor state with a cost value decreased by one, whereas all
other successor states have a cost value of infinity. Hence, Algorithm 1 with
the costPP function finds a concrete error trajectory within n steps.

Under the idealized assumptions of Proposition 3.6, it follows immediately
that guided search applying the full PDB cannot improve over the partial
PDB.

24 3 Guided Search for Hybrid Automata

Corollary 3.7. Under the assumptions of Proposition 3.6, guided search
with Algorithm 1 and costP explores at least as many states as with costPP .

Proposition 3.6 and Corollary 3.7 show that partial PDBs can provide
effective search guidance in an idealized setting where the applied abstrac-
tion only introduces spurious behavior on non-relevant parts of the region
space. Clearly, in practice, these assumptions will mostly not be satisfied
for abstractions that are efficiently computable. However, we rather consider
Proposition 3.6 as a proof of concept showing that the basic concept of par-
tial PDBs is meaningful in our setting. (In our experimental analysis, we will
show that partial PDBs yield an effective and efficient approach for a num-
ber of practical and challenging problems as well – we will come back to this
point in Section 3.5.) Overall, we will see that although in case the require-
ments of Proposition 3.6 are not fulfilled, partial PDBs can still be a good
heuristic choice that lead to cost functions that are efficiently computable
and accurately guide the concrete search.

3.3.3 Discussion

Our pattern database approach for finding error states exploits abstractions
in a different way than in common approaches for verification (see Section 3.4
for a discussion on related work). Most notably, the main focus of our ab-
straction is to provide the basis for the cost function to guide the search,
rather than to prove correctness (although, under certain circumstances, it
can be efficiently used for verification as well – we will come back to this
point in the experiments section). As a short summary of the overall ap-
proach, we first compute a symbolic abstract region space (as described in
Section 3.3.1), where the encountered symbolic abstract states s# are stored
in a table together with the corresponding abstract cost values of s#. To
avoid the (possibly costly) computation of an entire PDB, we only compute
the PDB partially (as described in Section 3.3.2). This partial PDB is then
used as the cost function of our guided reachability algorithm. As in many
other approaches that apply abstraction techniques to reason about hybrid
automata, the abstraction that is used for the PDB is supposed to accu-
rately reflect the “important” behavior of the automaton, which results in
accurate search guidance of the resulting cost function and hence, of our
guided reachability algorithm.

An essential feature of the PDB-based cost function is the ability to re-
flect the continuous and the discrete part of the automaton. To make this
more clear, consider again the motivating example from the introduction
(Figure 3.1). As we have discussed already, the box-based distance function

3.4 Related Work 25

first wrongly explores the whole lower branch of this automaton because no
discrete information is used to guide the search. In contrast, a partial PDB
is also able to reflect the discrete behavior of the automaton. In this exam-
ple, the partial PDB consists of an abstract trajectory to the first reach-
able error state, which is already sufficient to guide the (concrete) region
space exploration towards to first reachable error state as well. In particular,
this example shows the advantage of partial PDBs compared to fully com-
puted PDBs (recall that fully computed PDBs would include all error states,
whereas the partial PDB only contains the trajectory to a shortest one). In
general, our PDB-approach is particularly well suited for hybrid automata
with a non-trivial amount of discrete behavior. However, the continuous be-
havior is still considered according to our abstraction technique as introduced
in Section 3.3.1. Overall, partial PDBs appear to be an accurate approach
for guided search because they accurately balance the computation time for
the cost function on the one hand, and lead to efficient and still accurately
informed cost functions on the other hand.

3.4 Related Work

Abstraction techniques for hybrid automata have been mostly considered in
a verification setting, i. e., in a setting where the focus is on proving that a
given set of bad states cannot be reached. For this purpose, abstractions have
been applied in different ways. On the one hand, a number of approaches
to abstract the regions of symbolic states within the reachability analysis
have been suggested, including constraint polyhedra [38], ellipsoids [52] and
orthogonal polyhedra [22]. In this chapter, we use the support function rep-
resentation [54]. These approaches have in common that the structure of
the considered hybrid automaton is left intact. On the other hand, it also
possible to abstract a hybrid automata structure. Alur et al. [2] suggest
to use predicate abstraction for the hybrid automata analysis. In addition,
Tiwari et al. [68] introduce a method based on the quantifier elimination de-
cision procedure for real closed fields. Furthermore, Tiwari [67] investigates
Lie derivatives and their application to the abstraction generation. Jha et
al. [46] computes abstractions by removing some of the continuous variables.
Finally, Bogomolov et al. [19] abstract hybrid automata by merging loca-
tions. The abstract dynamics is computed by eliminating the state variables
and computing a convex hull. Our pattern database approach belongs to the
first group outlined above as we exploit the parametrization of the symbolic
region representation.

A prominent model checking approach for hybrid automata is based on
counterexample-guided abstraction refinement (CEGAR) [4, 3]. In a nutshell,

26 3 Guided Search for Hybrid Automata

CEGAR iteratively refines the considered abstraction until the abstraction
is fine enough to prove or refute the property. Our PDB approach shares
with CEGAR the general idea of using an abstraction to analyze a concrete
automaton. However, in contrast to CEGAR, where abstract counterexam-
ples have to be validated and possibly used in further abstraction refinement,
abstractions for PDBs are never refined and only used as a heuristic to guide
the search within the concrete automaton. In other words, in contrast to
CEGAR, the accuracy of the abstraction influences the order in which con-
crete states are explored, and hence, the accuracy in turn influences the
performance of the resulting model checking algorithm. Therefore, a crucial
difference lies in the fact that CEGAR does the search in the abstract space,
replays the counterexample in the concrete space, and stops if the error tra-
jectory cannot be followed. In contrast, our approach does the search in the
concrete space and uses the PDBs for guidance, only. If an abstract trajectory
cannot be followed, the search does not stop, but tries other branches until
either a counterexample is found, or all trajectories have been exhausted.

Considering more specialized techniques to find error states in faulty hy-
brid automata, Bhatia and Frazzoli [15] propose using rapidly exploring ran-
dom trees (RRTs). In the context of hybrid automata, the objective of a basic
RRTs approach is to efficiently cover the region space in an “equidistant”
way in order to avoid getting stuck in some part of the region space. Recently,
RRTs were extended by adding guidance of the input stimulus generation
[29]. However, in contrast to our approach, RRTs approaches are based on
numeric simulations, rather than symbolic executions. Applying PDBs to
RRTs would be an interesting direction for future work. In a further ap-
proach, Plaku, Kavraki and Vardi [59] propose to combine motion planning
with discrete search for falsification of hybrid automata. The discrete search
and continuous search components are intertwined in such a way that the
discrete search extracts a high-level plan that is then used to guide the mo-
tion planning component. In a slightly different setting, Ratschan and Smaus
[64] apply search to finding error states in hybrid automata that are deter-
ministic. Hence, the search reduces to the problem of finding an accurate
initial state.

SpaceEx [39] is a recently developed, yet already prominent model check-
ing tool for hybrid automata. As suggested by the name, it explores the
region space by applying (symbolic) search. The most related approach to
this thesis has recently been presented by Bogomolov et al. [20], who propose
a cost function based on Euclidean distances of the regions of the current
state and error states. The resulting guided search algorithm is implemented
in SpaceEx and has demonstrated to achieve significant guidance and per-
formance improvements compared to the uninformed search of SpaceEx. In

3.5 Evaluation 27

contrast to the presented PDB approach in this thesis, the Euclidean dis-
tances are solely based on the continuous part of the automaton, whereas
PDBs are able to reflect both discrete and continuous parts.

Moreover, guided search has been applied to finding error states in a
subclass of hybrid automata, namely to timed systems. In particular, PDBs
have been investigated in this context [50, 51, 69]. In contrast to this chap-
ter, the PDB approaches for timed systems are “classical” PDB approaches,
i. e., a subset of the available automata and variables are selected to com-
pute a projection abstraction. To select this subset, Kupferschmid et al. [50]
compute an abstract error trace and select the automata and variables that
occur in transitions in this abstract trace. In contrast, Kupferschmid and
Wehrle [51, 69] start with the set of all automata and variables (i. e., with
the complete system), and iteratively remove variables as long as the result-
ing projection abstraction is “precise enough” according to a certain quality
measure. In both approaches, the entire PDB is computed, which is more
expensive than the partial PDB approach proposed in this chapter.

3.5 Evaluation

We have implemented costPP in the SpaceEx tool [39] and evaluated it on
a number of challenging benchmarks. The experiments have been performed
on a machine running with AMD Opteron 6174 processors. We set a time
limit of 30 minutes per run. In the following, we report results for our PDB
implementation of costPP in SpaceEx. We compared costPP with uninformed
depth-first search as implemented in SpaceEx, and with the recently proposed
box-based distance function [20] on several challenging benchmark problems.
We compare the number of iterations of SpaceEx, the length of the error
trajectory found as well as the overall search time (including the computation
of the PDB for costPP) in seconds. In the following, we will shortly denote
partial PDBs with PDBs.

3.5.1 Results for Navigation Benchmarks

As a first set of benchmarks, we consider a variant of the well-known nav-
igation benchmark [35]. This benchmark models an object moving on the
plane which is divided into a grid of cells. The dynamics of the object’s
planar position in each cell is governed by the differential equations ẋ = v,
v̇ = A(v−vd) where vd stands for the targeted velocity in this location. Com-
pared to the originally proposed navigation benchmark problem, we address
a slightly more complex version with the following additional constraints.

28 3 Guided Search for Hybrid Automata

Table 3.1: Results for the navigation benchmarks. Abbreviations: Unin-
formed DFS: Uninformed depth-first search, Box-heuristic: box-based dis-
tance heuristic, PDB: our PDB cost function costPP , #loc: number of loca-
tions, #it: number of iterations, length: length of the found error trajectory,
time: total time in seconds including any preprocessing. For our PDB ap-
proach, the fraction of the total time that is needed for the PDB computation
is additionally reported in parenthesis.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 400 122 15 206.1 62 15 99.883 16 15 28.325 (2.714)
2 400 183 33 262.565 86 33 168.815 34 33 75.626 (10.153)
3 625 75 33 99.758 34 33 52.222 34 33 62.283 (10.234)
4 625 268 158 368.545 231 158 296.89 159 158 178.705 (13.992)
5 625 85 79 167.502 26 25 53.164 26 25 58.417 (5.002)
6 625 96 53 155.458 101 53 148.448 54 53 106.283 (13.267)
7 625 227 34 280.406 105 34 137.363 35 34 66.315 (12.682)
8 625 178 25 371.8 86 25 192.71 26 25 60.639 (9.609)
9 625 297 17 502.049 102 17 187.003 18 17 42.785 (10.232)
10 625 440 30 753.488 136 30 282.914 31 30 84.031 (18.114)
11 900 234 72 378.906 129 21 208.789 22 21 45.085 (10.973)
12 900 317 43 473.785 174 61 277.467 44 43 86.936 (21.097)
13 900 367 37 596.671 148 37 266.718 38 37 97.456 (26.926)
14 900 411 32 608.962 278 32 419.827 33 32 79.987 (14.934)
15 900 379 44 625.685 107 44 194.535 45 44 97.138 (12.302)

First, we add inputs allowing perturbation of object coordinates, i. e., the
system of differential equations is extended to: ẋ = v + u, v̇ = A(v − vd),
umin ≤ u ≤ umax. Second, to make the search task even harder, the bench-
mark problems also feature obstacles between certain grid elements. This is
particularly challenging because, in contrast to the original benchmark sys-
tem, one can get stuck in a cell where no further transitions can be taken, and
consequently, backtracking might become necessary. The size of the problem
instances varies from 400 to 900 locations, and all instances feature 4 vari-
ables.

The results for the navigation benchmark problem class are provided in
Table 3.1, where the best results are given in bold fonts with respect to the
total runtime. The fraction of the total time to compute the PDB is given
in parenthesis. As a general picture, they show that the precomputation
time for the PDB mostly pays off in terms of guidance accuracy and overall
runtime. Specifically, the overall runtime could (sometimes significantly) be
reduced compared to uninformed search and also compared to the box-based
heuristic. For example, in navigation instance 1, the precomputation for the

3.5 Evaluation 29

0 10 20
0

5

10

15

20

x
1

x 2

Fig. 3.2: Navigation
benchmark: unin-
formed search error
trajectory for in-
stance 1.

0 10 20
0

5

10

15

20

x
1

x 2

Fig. 3.3: Navigation
benchmark: box-based
heuristic search error
trajectory for in-
stance 1.

0 10 20
0

5

10

15

20

x
1

x 2

Fig. 3.4: Navigation
benchmark: PDB
search error trajec-
tories for instance 1
(abstract: light gray,
concrete: dark gray).

PDB only needs around 3 seconds, leading to an overall runtime of around
28 seconds, compared to around 99 seconds with the box-based heuristic
and about 206 seconds with uninformed search. This search behavior for in-
stance 1 is also visualized in Figure 3.2, Figure 3.3, and Figure 3.4, showing
the trajectories (i. e., the parts of the covered region space) with the different
search approaches. We observe the following: While uninformed depth-first
search explores quite a large number of unnecessary trajectories, the box-
based heuristic already guides the search more accurately and finds an error
state with much fewer detours. Considering the PDB approach, we observe
that PDBs can guide the search even more accurately in the sense that no
detours are explored at all, and hence, no backtracking is needed either. Fur-
thermore, the covered parts of the region space is again much lower than both
with uninformed search and the box-based heuristic. In addition, we observe
that even the abstract run (shown in light gray) is already rather accurate,
covering only little more of the region space than the concrete run. Overall,
the PDB approach finds an accurate balance between the computation time
and the accuracy of the resulting cost function.

3.5.2 Results for Navigation Benchmarks with Additive
Vanishing Perturbation

We consider another variant of the navigation benchmark with an additive
vanishing perturbation (see, e.g., [49]). We use this variation for evaluating

30 3 Guided Search for Hybrid Automata

the scalability of our approach with respect to increased continuous complex-
ity given a constant discrete complexity. For this, the benchmark is modified
to model a vanishing perturbation w ∈ Rp with increasing model order (i. e.,
p = 1, p = 2, etc.). In more detail, we extend the system of differential equa-
tions to ẋ = v+u, v̇ = A(v−vd)+

∑p
i=1wi, ẇ = Aww, where umin ≤ u ≤ umax

as before and Aw ∈ Rp×p is Hurwitz to ensure it is a vanishing perturbation.
Table 3.2 presents results of the same scenarios evaluated in the earlier

navigation benchmark for p = 2 additional vanishing perturbation variables
(i. e., 2 additional state variables compared to the earlier navigation bench-
mark, yielding n = 6 continuous variables overall). We observe a similar pic-
ture as for the previous results: the PDB approach outperforms uninformed
DFS and also the box-based heuristic in the majority of the problems. This
is also reflected in Figs. 3.5, 3.6, and 3.7, which exemplary show the corre-
sponding reachable states in the second instance for the three approaches,
respectively.

In addition, Figure 3.8 presents the navigation benchmark instance 1
scaling the number of additional state variables from p = 1 through p = 8 (for
a total of n = 5 through n = 12 continuous variables), while keeping all else
constant, using a timeout of 30 minutes. We observe that also with increasing
number of additional continuous variables, the runtime scalability of our
PDB approach is considerably better compared to the box-based heuristic
and uninformed DFS—even for p = 8 additional variables, PDBs is able to
find an error state in less than 30 minutes. In contrast, both the uninformed
DFS and box-based heuristic methods cannot find the error states in less
than 30 minutes beyond p = 3 and p = 5 additional variables, respectively.

3.5.3 Results for Satellite Benchmarks

In this section, we consider benchmarks that result from hybridization. For
a hybrid automaton H with nonlinear continuous dynamics, hybridization
is a technique for generating a hybridized hybrid automaton from H. The
hybridized automaton has simpler continuous dynamics (usually affine or
rectangular) that over-approximate the behavior of H [10], and can be an-
alyzed by SpaceEx. For our evaluation, we consider benchmarks from this
hybridization technique applied to nonlinear satellite orbital dynamics [48],
where two satellites orbit the earth with nonlinear dynamics described by
Kepler’s laws. The orbits in three-dimensional space lie in a two-dimensional
plane and may in general be any conic section, but we assume the orbits
are periodic, and hence circular or elliptical. Fixing some orbital parameters
(e.g., the orientations of the orbits in three-space), the states of the satel-
lites in three-dimensional space x1, x2 ∈ R3 can be completely described in

3.5 Evaluation 31

Table 3.2: Results for the navigation benchmarks with two additional contin-
uous variables modeling an additive vanishing perturbation. Abbreviations:
OOT: out of time (max 30 minutes). Other abbreviations as in Table 3.1.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 400 122 15 709.416 62 15 368.986 16 15 116.804 (4.448)
2 400 183 33 868.497 86 33 655.368 34 33 274.823 (16.898)
3 625 75 33 373.06 34 33 210.928 34 33 228.217 (16.978)
4 625 268 158 1175.14 231 158 960.585 268 158 1187.27 (23.566)
5 625 85 79 563.22 26 25 219.284 26 25 227.956 (8.31)
6 625 96 53 536.192 101 53 535.117 54 53 357.119 (22.137)
7 625 227 34 1061.49 105 34 549.549 35 34 247.273 (22.147)
8 625 201 25 1496.8 89 25 818.356 26 25 222.398 (15.639)
9 625 298 17 1734.63 102 17 708.366 18 17 147.447 (16.875)
10 625 n/a n/a OOT 151 30 1223.23 31 30 287.34 (29.607)
11 900 234 72 1288.58 129 21 787.449 22 21 153.204 (18.309)
12 900 317 43 1624.18 174 61 995.995 161 43 778.93 (34.855)
13 900 n/a n/a OOT 148 37 897.707 38 37 311.623 (44.663)
14 900 n/a n/a OOT 279 32 1488.05 33 32 280.072 (24.497)
15 900 n/a n/a OOT 107 44 687.813 45 44 327.326 (20.426)

terms of their true anomalies (angular positions). Likewise, one can trans-
form between the three-dimensional state description and the angular posi-
tion state description. The nonlinear dynamics for the angular position are

ν̇i =
√
µ/p3

i (1 + ei cos νi)
2 for each satellite i ∈ {1, 2}, where µ is a gravi-

tational parameter, pi = ai(1 − e2
i) is the semi-latus rectum of the ellipse,

ai is the length of the semi-major axis of the ellipse, and 0 ≤ ei < 1 is the
eccentricity of the ellipse (if ei = 0, then the orbit is circular and pi simplifies
to the radius of the circle). These dynamics are periodic with a period of 2π,
so we consider the bounded subset [0, 2π]2 of the state-space R2, and add
invariants and transitions to create a hybrid automaton ensuring νi ∈ [0, 2π].
For the benchmark cases evaluated, we fixed µ = 1 and varied pi and ei for
several scenarios. For more details, we refer to the work of Johnson et al. [48].
The size of the problem instances varies from 36 to 1296 locations, and all
instances feature 4 variables.

The verification problem is conjunction avoidance, i. e., to determine
whether there exists a trajectory where the satellites come too close to one an-
other and may collide. Some of the benchmark instances considered are par-
ticularly challenging because they feature several sources of non-determinism,
including several initial states and several bad states. As an additional source
of non-determinism, some benchmarks model thrusting. A change in a satel-
lite’s orbit is usually accomplished by firing thrusters. This is usually modeled

32 3 Guided Search for Hybrid Automata

0 5 10 15 20
0

5

10

15

20
Reach Verimag

x
1

x 2

Fig. 3.5: Naviga-
tion benchmark with
additive vanishing
perturbation for p = 2:
uninformed search
error trajectory for in-
stance 2.

0 5 10 15 20
0

5

10

15

20
Box Based Heuristic

x
1

x 2

Fig. 3.6: Naviga-
tion benchmark with
additive vanishing
perturbation for p = 2:
box-based heuristic
search error trajectory
for instance 2.

0 5 10 15 20
0

5

10

15

20
PDBs

x
1

x 2

Fig. 3.7: Naviga-
tion benchmark with
additive vanishing
perturbation for p = 2:
PDB search error tra-
jectories for instance 2
(abstract: light gray,
concrete: dark gray).

as an instantaneous change in the orbital parameters ei and ai. However, the
angular position νi in this new orbit does not, in general, equal the angular
position in the original orbit, and a change of variables is necessary, which
can be modeled by a reset of the νi values when the thrusters are fired. The
transitions introduced for thrusting add additional discrete non-determinism
to the system.

The results for the satellite benchmark class are provided in Table 3.3.
In general, we observe a similar search behavior to what we have observed
in the navigation problems: The precomputation of the PDB pays off in the
sense that much better search behavior can be achieved, leading to a fewer
number of iterations and a lower overall runtime. For example, in instance 5,
the precomputation time for the PDB amounts to roughly 5 seconds, leading
to an overall time of around 92 seconds for the concrete run. In contrast,
uninformed search and the box-based heuristic need around 426 and 272
seconds, respectively. The search behavior of the concrete and abstract run
in instance 5 is also visualized in Figure 3.9, Figure 3.10, and Figure 3.11.
We observe that the part of the covered search space with our PDB approach
is again lower compared to the box-based heuristic and uninformed search.
Figure 3.11 again particularly shows the part of the search space that is
covered by the abstract run (which can be performed efficiently due to our
abstraction described in Section 3.3.1), showing that our PDB approach finds

3.5 Evaluation 33

an accurate balance between the computation time and the accuracy of the
resulting cost function.

Furthermore, we have also been able to effectively and efficiently prove the
absence of errors in the instances 6 and 14, where the abstract run already
revealed that no concrete error trajectory exists. As our abstraction is an
over-approximation, we can safely conclude that no reachable error state
in the concrete system exists either, and do not need to start the concrete
search at all. Being able to efficiently verify hybrid automata with PDBs is
a significant advantage compared to the box-based heuristic.

3.5.4 Results for Water-Tank Benchmarks

This benchmark consists of variants of the tank benchmark [5, 47]. The tank
benchmark (see Figure 3.12) consists of some N ∈ N tanks, where each tank

1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Additional Continuous Variables (p)

R
un

tim
e

(s
)

Uninformed DFS
Box−heuristic
PDB

Fig. 3.8: Navigation benchmark with additive vanishing perturbation for
1 ≤ p ≤ 9 with the same discrete structure as instance 1 (i. e., all else
constant except the number of additive perturbation terms). Total number
of continuous variables is n = 4 + p. Runs that exceeded the 30 minutes
timeout are not plotted.

34 3 Guided Search for Hybrid Automata

Table 3.3: Results for the satellite benchmarks. Abbreviations: OOT: out of
time (max 30 minutes). Other abbreviations as in Table 3.1.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 36 116 32 37.501 75 10 18.393 16 10 14.03 (10.05)
2 36 464 49 138.149 473 19 162.666 30 13 21.882 (16.427)
3 64 719 87 42.198 281 91 14.897 264 121 27.067 (12.591)
4 100 111 106 51.705 45 15 30.602 23 14 20.461 (8.106)
5 100 109 104 426.37 45 15 272.133 23 14 92.393 (8.082)
6 159 2170 ∞ 107.68 1354 ∞ 68.107 0 ∞ 21.051 (21.051)
7 324 580 135 251.016 1289 144 649.345 25 24 42.316 (11.921)
8 557 1637 42 61.754 936 42 35.523 156 42 60.027 (54.115)
9 574 7113 41 298.601 561 10 23.977 14 10 8.811 (8.309)
10 575 9092 4 376.935 387 5 16.467 15 4 3.182 (2.651)
11 576 1485 775 273.265 253 13 50.172 15 13 13.385 (7.899)
12 576 1005 775 172.192 796 13 160.342 15 13 13.324 (7.841)
13 576 1317 1147 1410.17 484 54 775.325 52 51 217.534 (104.304)
14 1293 13691 ∞ 526.483 7790 ∞ 312.288 0 ∞ 170.428 (170.428)
15 1296 n/a n/a OOT n/a n/a OOT 206 139 784.986 (526.336)

0 100 200 3000

50

100

150

200

250

300

350

ν1

ν 2

Fig. 3.9: Satellite
benchmark: unin-
formed search error
trajectory for in-
stance 5.

0 100 200 3000

50

100

150

200

250

300

350

ν1

ν 2

Fig. 3.10: Satellite
benchmark: box-based
heuristic search er-
ror trajectory for
instance 5.

0 100 200 3000

50

100

150

200

250

300

350

ν1

ν 2

Fig. 3.11: Satellite
benchmark: PDB
search error trajec-
tories for instance 5
(abstract: light gray,
concrete: dark gray).

i ∈ {1, . . . , N} loses volume xi at some constant flow rate vi, so tank i has
dynamics ẋi = −vi, for a real constant vi ≥ 0. One of the tanks is filled from
an external inlet at some constant flow rate w, so it has dynamics ẋi = w−vi,
for a real constant w ≥ 0. In our variant, the volume lost by each tank simply
vanishes and does not move from one tank to another. This benchmark class
is qualitatively different than either the navigation or satellite benchmarks,
as the discrete state space may be small.

3.5 Evaluation 35

𝑥1

𝑟1

𝑣1

𝑥𝑁

𝑟𝑁

𝑣𝑁

…

𝑤

Fig. 3.12: Water tank benchmark with N tanks

The two variations we consider are complete and linear topologies with
regard to the inlet tank choice. The inlet pipe w may be moved to some tank
j with volume xi ≤ ri from some tank i, where: (a) j 6= i is any other tank
for the complete topology, or (b) j ∈ {i+ 1, i−1} is an adjacent tank for the
linear topology. The invariants in our variant of the benchmark are that the
volumes of all tanks are non-negative: ∀i ∈ {1, . . . , N} : xi ≥ 0. We consider
variants where the aggregate out flow rate equals the in flow rate, so the
sum of the flow rates out of all tanks equals the inlet flow rate: w =

∑N
i=1 vi.

Hence, the total volume is constant, so for all t ≥ 0:

N∑
i=1

xi(t) =

N∑
i=1

xi(0).

In these instances, the purpose of the inlet is to effectively move net volume
between tanks, and the search problem is to find an appropriate order of
such moves to reach a specific volume level in all of the N tanks.

The results for the water tank problem class are provided in Table 3.4.
Again, the results are similar to the results in the navigation and the satellite
benchmark classes: We observe that PDBs can help significantly in guiding
the search towards error states. By comparing, e.g., Figure 3.13, Figure 3.14,
and Figure 3.15, which show an execution of uninformed search, the box-
based heuristic, and PDBs, respectively, we observe that our PDB-based
approach is able to exploit the abstract run to more quickly find the correct
sequence of tanks to fill to reach a certain region of the state-space (again,
the light gray regions are covered in the abstract run only and can be com-
puted efficiently). Generally, PDBs can particularly help for the water-tank

36 3 Guided Search for Hybrid Automata

Table 3.4: Results for the tank benchmarks. Abbreviations: N : number of
tanks (numbers of locations #loc and continuous variables), Top: topology
(C=complete, L=linear), OOT: out of time (max 30 minutes). Other abbre-
viations as in Table 3.1.

Inst. N Top. Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 3 C 4 3 254.032 4 3 305.309 4 3 166.516 (6.285)
2 3 C 4 3 237.33 4 3 238.311 4 3 124.195 (4.71)
3 3 C 4 3 483.083 4 3 479.847 4 3 524.132 (41.855)
4 3 C n/a n/a OOT 5 2 828.846 2 1 190.139 (7.856)
5 3 C 6 5 508.693 8 2 76.68 3 2 32.141 (11.351)
6 3 C n/a n/a OOT 5 2 312.54 3 2 220.108 (9.272)
7 3 L 6 5 506.076 5 2 281.351 3 2 218.484 (7.791)
8 3 L 3 2 280.473 3 2 276.498 3 2 289.545 (6.156)
9 4 L n/a n/a OOT 5 4 6.171 13 5 24.972 (8.688)
10 3 L 6 5 270.648 5 2 144.673 2 1 41.345 (0.84)
11 4 L 18 6 30.95 11 6 23.81 4 3 8.696 (3.199)
12 5 L 10 7 23.949 14 7 63.518 4 3 18.138 (9.289)
13 6 L 39 27 64.091 28 21 51.595 4 2 21.208 (6.283)
14 7 L 53 34 130.636 44 22 117.732 9 5 117.763 (9.536)
15 8 L 37 29 108.7 46 21 164.349 33 29 140.968 (30.271)

0 200 400 600
0

100

200

300

400

x
1

x 3

Fig. 3.13: Water tank
benchmark: Unin-
formed search error
trajectory for in-
stance 10.

0 200 400 600
0

100

200

300

400

x
1

x 3

Fig. 3.14: Water tank
benchmark: box-based
heuristic search error
trajectory instance 10.

0 200 400 600
0

100

200

300

400

x
1

x 3

Fig. 3.15: Water tank
benchmark: PDB
search error trajec-
tories instance 10
(abstract: light gray,
concrete: dark gray).

problems because of the non-determinism that occurs in this problem class
(which is important to be resolved accurately, corresponding to the choice of
which tanks to fill in which order). However, we also observe that in 4 cases,
the overall runtime is higher than the runtime with the box-based heuristic.
In these cases, the precomputation of the PDB does not pay off – we will
discuss such cases in more detail below.

3.5 Evaluation 37

Table 3.5: Results for the heater benchmarks. Abbreviations: OOT: out of
time (max 30 minutes). Other abbreviations as in Table 3.1.

Inst. #loc Uninformed DFS Box-heuristic PDB
#it length time #it length time #it length time (time abs.)

1 4 7 6 148.4 12 6 212.651 7 6 149.117 (0.625)
2 4 9 8 305.21 5 0 146.311 1 0 10.506 (7.982)
3 4 4 ∞ 27.476 4 ∞ 27.579 4 ∞ 27.467 (0.042)
4 4 7 ∞ 178.781 7 ∞ 177.748 7 ∞ 176.566 (1.1)
5 4 21 20 84.779 n/a n/a OOT 21 20 98.173 (12.303)
6 4 4 1 1.284 n/a n/a OOT 4 1 1.705 (0.4)
7 4 4 2 34.493 4 2 34.525 3 1 32.07 (3.148)
8 4 7 6 89.724 49 48 907.52 7 6 90.778 (0.475)
9 4 4 2 8.772 3 2 8.183 3 1 8.28 (4.687)
10 4 5 4 27.164 15 8 65.249 5 4 27.851 (0.635)
11 4 13 8 25.771 25 14 48.844 12 8 23.708 (0.435)
12 4 3 0 10.603 3 0 10.601 2 0 8.212 (0.544)
13 4 n/a n/a OOT n/a n/a OOT 10 6 640.441 (240.583)
14 4 7 6 58.533 36 22 284.592 7 6 59.157 (0.55)
15 4 9 8 38.06 42 24 150.263 9 8 41.948 (3.752)

0 10 20
0

10

20

30

x
1

x 2

Fig. 3.16: Heater
benchmark: Unin-
formed search error
trajectory for for in-
stance 2.

0 10 20
0

10

20

30

x
1

x 2

Fig. 3.17: Heater
benchmark: box-based
heuristic search error
trajectory for in-
stance 2.

0 10 20
0

10

20

30

x
1

x 2

Fig. 3.18: Heater
benchmark: PDB
search error trajec-
tories for instance 2
(abstract: light gray,
concrete: dark gray).

3.5.5 Results for Heater Benchmarks

This benchmark consists of variants of the heater benchmark [35]. In our
variation, we consider three rooms with one heater. The automaton is

38 3 Guided Search for Hybrid Automata

modeled with four locations, consisting of no heaters on in any room, or
the heater is on in one of the three rooms. The size of the problem in-
stances have 4 locations, and all instances feature 3 temperature variables,
1 time variable, and 16 real constants. The temperature dynamics are lin-
ear and there is coupling between temperatures in different rooms. If the
heater is on in a room, its temperature rate of change has a positive ad-
ditive term ci, but otherwise does not, so the temperature may decrease
(subject to the temperatures in different rooms). Specifically, for room 1
(and symmetrically rooms 2 and 3), if the heater is on, the dynamics are:
ẋ1 = b1(u − x1) + a1,2(x2 − x1) + a1,3(x3 − x1) + c1, but if the heater is
off, the dynamics are the same except without the c1 term. In our variant,
the invariants specify only that the temperatures are all non-negative and
bounded. The heater may be turned on in room i ∈ {1, 2, 3} if xi ≤ Ton for
some real threshold Ton, and turned off if xi ≥ Toff for some real threshold
Toff . There is non-determinism in choosing to turn off or on the heater once
the threshold condition is met, and there is a potential delay in changing the
state of the heater from off to on and vice-versa.

The results for the heater benchmark are provided in Table 3.5. We ob-
serve that, unlike the results for the other benchmarks, the results for the
heater are more diverse. While the PDB approach overall performs best in 7
out of 15 problem instances, it is somewhat slower than uninformed depth-
first search (DFS) in other 7 instances. Having a closer look, we observe that
the error trajectories with DFS are found with equally many iterations by
SpaceEx, and additionally, their length is the same compared to those found
with the PDB approach. In such cases where the PDB cannot improve over
the search behavior of DFS, DFS is naturally more efficient because of the
PDB’s computational overhead (in fact, the difference in search time is al-
most exactly due to this overhead). However, obtaining such an informed
search behavior with DFS is rather based on having good luck, whereas
PDBs provide a more principled approach to achieve this. Furthermore, de-
spite the sometimes higher runtimes in this benchmark class, we observe that
our PDB approach is able to solve one more problem than DFS, and three
more problems than the box-based heuristic within our time limit of 30 min-
utes. In addition, similar to the satellite benchmarks, we have been able to
effectively prove the absence of errors in two cases (heater instance 3 and
instance 4).

Finally, for the last time, let us have a look at the covered region space by
DFS, by the box-based heuristic and by PDBs in Figure 3.16, Figure 3.17,
and Figure 3.18, respectively. We observe that the concrete run with PDBs
(indicated in dark grey) boils down to a small curve in this instance, whereas
the other approaches cover a (much) larger fraction.

3.5 Evaluation 39

3.5.6 Runtimes of Partial PDBs vs. Full PDBs

Considering the runtime to build the partial PDBs compared to computing
full PDBs, we observed that strong reductions of several orders of magnitude
can indeed be obtained. In particular, the computation of the full abstract
state space sometimes exceeds our time bound of 30 minutes, whereas the
partial PDBs can still be computed efficiently. This happens in the water tank
problem class, where full PDBs could not be computed within 30 minutes in
any instance, whereas partial PDBs could be computed within less than a
minute in all of the 15 instances (less than 10 seconds in 9 of these instances).
In this respect, we conclude that the notion of partial PDBs particularly
makes the overall approach tractable on a larger class of problems. In cases
where full PDBs can be computed within 30 minutes, the runtime can be
significantly higher than with partial PDBs: For example, in the satellite
domain instance 10, computing the full PDB needs around 175 seconds,
compared to roughly 3 seconds for computing the partial PDB.

3.5.7 Discussion

We have observed that PDBs can provide more informed search behavior
than uninformed search or than the box-based heuristic. A potential prob-
lem is the computational overhead due to its precomputation time. We will
discuss advantages and drawbacks of our PDB approach in this section.

As a general picture, we first observe that the number of iterations of
SpaceEx and also the length of the found error trajectories are mostly at most
as high with PDBs as with uninformed search and the box-based heuristic.
In particular, our PDB approach could solve several problem instances where
uninformed search and the box-based heuristic ran out of time. In some cases,
the precomputation of the PDB does not pay off compared to DFS and the
box-based heuristic – however, in such cases, the pure concrete search time
with PDBs is still mostly similar to the pure search time of DFS and the
box-based approach.

We further observe that the length of the trajectories found by the box-
based heuristic and the PDB heuristic is often similar or equal, while the
number of iterations is mostly decreased. This again shows that the search
with the PDB approach is more focused than with the box-based heuristic
in such cases, and less backtracking is needed. In particular, the box-based
heuristic always tries to find a “direct” trajectory to an error state, while
ignoring possible obstacles. Therefore, the search can get stuck in a dead-
end state if there is an obstacle, and as a consequence, backtracking becomes
necessary. Furthermore, the box-based heuristic can perform worse than the

40 3 Guided Search for Hybrid Automata

PDB if several bad states are present. In such cases, the box-based heuristic
might “switch” between several bad states, whereas the better accuracy of
the PDB heuristic better focuses the search towards one particular bad state.
In problems that are structured more easily (e. g., where no “obstacles” exist
and error states are reachable “straight ahead”), the box-based heuristic
might yield better performance because the precomputation of the PDB
does not pay off.

Finally, a general advantage of PDBs compared to the box-based heuris-
tic which we did not discuss in detail so far is the broader applicability of
PDBs. By definition, the box-based heuristic estimates distances by com-
puting Euclidean distances between the region of the current and the error
state. However, in problems where error states are defined solely by (dis-
crete) locations, there is no such error region, and the box-based distance
heuristic is not effectively applicable. In contrast, PDBs are more general,
and applicable for all kinds of error states.

3.6 Conclusion

In this section, we have introduced two heuristics to guide the search in the
state space of hybrid automata. The first one, the box-based heuristic, works
by estimating the distance between the center of the enclosing box of the
considered region and the center of the box enclosing the bad region. We
have shown that for a particular class of hybrid systems, this metric is an
appropriate approximation of an idealized trajectory metric. Our experimen-
tal evaluation additionally shows that this metric can serve as an informed
cost heuristic even for richer classes of hybrid systems. In particular, it has
shown good results on systems with mainly continuous behavior. We end up
with such systems, e.g., as a result of hybridization process, i.e., when some
complex continuous dynamic is approximated by simpler one by state space
partitioning.

The second heuristic applies coarse-grained space abstractions to compute
pattern databases (PDBs) for hybrid systems. For a given safety property
and hybrid system with linear dynamics in each location, we compute an
abstraction by coarsening the over-approximation SpaceEx computes in its
reachability analysis. The abstraction is used to construct a PDB, which con-
tains abstract symbolic states together with their abstract error distances.
These distances are used in guiding SpaceEx in the concrete search. Given
a concrete symbolic state, the guiding heuristics returns the smallest dis-
tance to the error state of an enclosing abstract symbolic state. This dis-
tance is used to choose the most promising concrete symbolic successor. In

3.6 Conclusion 41

our implementation, we have taken advantage of the SpaceEx parametriza-
tion support, and were able to report a significant speedup in counterexample
detection and even for verification. Our new PDB support for SpaceEx can
be seen as a nontrivial extension of our previous work on guided reachability
analysis for hybrid systems where the discrete system structure was ignored
completely [20]. For the future, it will be interesting to further refine and
extend our approach by, e. g., considering even more fine grained abstraction
techniques, or by combinations of several abstraction techniques and there-
fore, by combining several PDBs. We expect that this will lead to even more
accurate cost functions and better model checking performance.

4

Assume Guarantee Abstraction Refinement for
Hybrid Automata

Assume-guarantee (AG) reasoning [61] is a well-known methodology for the
verification of large systems. The idea behind is to decompose the verifica-
tion of a system into the verification of its components, which are smaller
and therefore easier to verify. A typical example of such systems would be a
system comprised of a controller and a plant. In this work, we mainly con-
centrate on hybrid automata [1] with stratified controllers, i.e., controllers
consisting of multiple strata (layers), where each of them is responsible for
some particular plant parameter. Assume-guarantee reasoning can be per-
formed using the following rule, ASym, where P is a safety property and
H1 ‖ H2 denotes the parallel composition of components H1 and H2, where
H1 is a plant and H2 is a controller.

1 : H1 ‖ A |= P
2 : H2 |= A

H1 ‖ H2 |= P

Rule ASym

In this rule,A denotes an assumption about the controller ofH1. Premise 1
ensures that when H1 is a part of a system that satisfies A, the system also
guarantees P . Premise 2 ensures that any system that contains H2 satisfies
A. Together the two premises imply the conclusion of the rule. The rule
ASym is applicable if the assumption A is more abstract than H2, but still
reflects H2’s behavior. Additionally, an appropriate assumption for the rule
needs to be strong enough for H1 to satisfy P in premise 1.

The most challenging part of applying assume-guarantee reasoning is
to come up with appropriate assumptions to use in the application of the
assume-guarantee rules. Several learning and abstraction-refinement tech-

44 4 Assume Guarantee Abstraction Refinement for Hybrid Automata

ẋ = v
T1 ≤ 1000

(a) Plant H1.

`2

v = 2;T2 ≤ 10

`1

v = 1;T2 ≤ 10

`3

v = 3;T2 ≤ 10

T2 := 0

(b) Controller H2 – unmerged.

`#

1 ≤ v ≤ 3;T2 ≤ 10

T2 := 0

(c) Controller H#
2 – merged.

Fig. 4.1: A motivating example

niques [16, 57] have been proposed for automating the generation of assump-
tions for the verification of transition systems.

In this chapter, we focus on the automated generation of assumptions in
the context of hybrid automata. Similar to the work by Bobaru et al. [16] we
use abstraction-refinement techniques to iteratively build the assumptions
for the rule ASym. In our case, H2, i.e., the controller of H1, is abstracted.
The use of over-approximations guarantees that the assumption describes the
component correctly and hence premise 2 holds by construction. However, it
is possible that premise 1 does not hold, in which case a counterexample is
provided. The counterexample is analyzed to see if it is spurious, in which
case the abstraction of H2 is refined to eliminate it. If the counterexample is
real, then H1 ‖ H2 violates P .

We present a framework which can efficiently handle the class of affine
hybrid automata [19]. Due to the mixed discrete-continuous nature of hybrid
automata, we need to pay special attention on the abstraction of continuous
dynamics. We illustrate the idea of our compositional analysis on a toy ex-
ample. Figure 4.1 shows a simple hybrid automaton consisting of the plant
H1 in Figure 4.1a and controller H2 in Figure 4.1b. We observe that the
derivative of variable x in plant H1 depends on the value of v governed by
the controller H2. Furthermore, we see that the controller operates in itera-
tions of length 10. The possible controller options are grouped in a stratum.
While analyzing this system, a hybrid model checker will consider all the
three options on every controller iteration which results in 3n branches for
n iterations. By noting that for some properties only the minimal and max-

4 Assume Guarantee Abstraction Refinement for Hybrid Automata 45

imal values of v are of relevance, we come up with an abstracted version of
the automaton H2 in Figure 4.1c. We replace the three alternative options
by only one coarser option. To ensure that the resulting automaton is in-
deed an over-approximation of the original system, we use 1 ≤ v ≤ 3 as an
invariant of the merged location `#, i.e., we replace the exact values of v
with its bounds. This abstraction will be especially useful to prove, e.g., that
within the first 1000 seconds of system operation the state x = 4000 will still
not be reached. In the abstraction we will reduce an exponential number of
branchings to a linear one. Note that this kind of location-merging abstrac-
tions is especially useful for the class of stratified controllers. The reason
is that the controller structure can be exploited to efficiently generate an
initial abstraction by merging locations belonging to the same stratum. In-
tuitively, this step allows us to adjust the precision level at which the system
parameters are taken into account. If the resulting abstraction is too coarse,
a finer-grained abstraction is generated in the refinement step.

The lesson we learn from this example is that merging of locations is
a promising approach to generate abstractions in scope of the assume-
guarantee reasoning paradigm. To ensure the conservativeness of the result-
ing abstraction, we compute the invariants as a convex hull of the original
locations. Note that the computation of minimal and maximal values of v
shown above represents a simple case of a general convex hull computation.
Given the continuous, affine dynamics of the form ẋ(t) = Ax(t) + u(t), the
merged locations are computed by first eliminating the (unprimed) state vari-
ables and consequently computing the convex hull of the resulting polytopes
over the derivatives. As outlined above, sometimes we might end up with
spurious counterexamples. To overcome this issue we proceed to the phase
of spuriousness checking. If the found path is indeed spurious, we refine the
system by splitting one or multiple locations and continue with the analysis
of this new system. Note that the assume-guarantee reasoning methodol-
ogy is a variant of the CEGAR approach [25]. The essential difference of
AGAR compared to CEGAR is the compositional handling of the system.
We develop our approach along these lines by ensuring that the proposed
algorithms work in the compositional fashion, e.g., we only abstract a part
of the system and the refinement algorithm considers a projection of the
found counterexample on the abstracted component. Our implementation in
SpaceEx [39] shows the practical potential.

The remainder of the chapter is organized as follows. In Section 4.1, we in-
troduce our compositional framework. This is followed by a discussion about
related work in Section 4.2. Afterwards, we present our experimental evalu-
ation in Section 4.3. Finally, we conclude the chapter in Section 4.4.

46 4 Assume Guarantee Abstraction Refinement for Hybrid Automata

4.1 Compositional Framework for Hybrid Automata

In this section, we introduce the main ingredients of our compositional frame-
work: the abstraction of a hybrid automaton, an algorithm for spuriousness
check, and a refinement algorithm.

4.1.1 Abstraction Algorithm

We construct our abstraction by partially merging system locations. To for-
mally define the abstraction, we introduce a location abstraction function α
and a location concretization function α−1 as follows.

Definition 4.1 (Location abstraction function). Location abstraction
function α : Loc → Loc# provides a mapping from every concrete location in
Loc to its abstract counterpart. Furthermore, we require |Loc#| ≤ |Loc|, i.e.,
the abstract system should have at most the same number of locations as the
original one.

Definition 4.2 (Location concretization function). Location concretiza-
tion function α−1 : Loc# → 2Loc provides a mapping from every abstract
location in Loc# to the set of concrete locations which were merged into it.

If ` ∈ α−1(`#), then ` is a corresponding location to the abstract location
`#. Furthermore, we abuse the notation and apply a concretization function
not only to abstract locations, but also to abstract symbolic states and ab-
stract symbolic paths. We define an abstract hybrid automaton H# induced
by the location abstraction function α and concrete hybrid automaton H as
follows:

Definition 4.3 (Location-merging abstraction).
Let H = (Loc,Var , Init ,Flow ,Trans, I) be a hybrid automaton and α :
Loc → Loc′ be a location abstraction function. The abstract automaton H# =
(Loc#,Var#, Init#,Flow#,Trans#, I #) induced by the location-merging ab-
straction with respect to the location function α is defined as follows:

• Loc# = Loc′, i.e., the location abstraction function provides which loca-
tions of H are to be merged. We assume that α keeps the bad location `bad
as a singleton.

• Var# = Var, i.e., the abstraction preserves the continuous variables of
the original system.

• ∀`# ∈ Loc# : Init#(`#) = CH(
⋃
`∈α−1(`#) Init(`)), i.e., the regions de-

scribing the initial values in concrete locations are first merged into one

4.1 Compositional Framework for Hybrid Automata 47

(possibly non-convex) set and afterwards are over-approximated by a con-
vex hull.
Note that if an abstract location is a singleton and Init(`) is a convex set,
the application of the convex hull operator results in the original set.

• ∀`# ∈ Loc# :

Flow#(`#)(x, ẋ) =

{
CH(

⋃
`∈α−1(`#) F`), |α−1(`#)| > 1

Flow(α−1(`#))(x, ẋ), |α−1(`#)| = 1

where F` = ∃x : (Flow(`)(x, ẋ) ∧ I (`)(x)).
• Trans# = {(`#, g, ξ, ˆ̀#)|∃` ∈ α−1(`#), ˆ̀ ∈ α−1(ˆ̀#) s.t. (`, g, ξ, ˆ̀) ∈

Trans}, i.e., an abstract transition between `# and ˆ̀# is added when
a transition in the concrete state space connecting the corresponding lo-
cations exists.

• ∀`# ∈ Loc# : I #(`#) = CH(
⋃
`∈α−1(`#) I (`)), i.e., similarly to the initial

regions, the invariants are merged and over-approximated by a convex
hull.

Dynamics:
ẋ = 2x+ 3y
ẏ = 4x− 5y

Invariant:
0 ≤ x ≤ 1
∧ 0 ≤ y ≤ 1

F1:
−5ẋ− 3ẏ ≤ 0
∧ −22 + 5ẋ+ 3ẏ ≤ 0
∧ −2ẋ+ ẏ ≤ 0
∧ −11 + 2ẋ− ẏ ≤ 0

(a) Location `1.

Dynamics:
ẋ = −x+ 3y + 5
ẏ = x+ 2y

Invariant:
1 ≤ x ≤ 3
∧ −1 ≤ y ≤ 0.3

F2:
−5 + 2ẋ− 3ẏ ≤ 0
∧ −5− 2ẋ+ 3ẏ ≤ 0
∧ −ẋ− ẏ ≤ 0
∧ −6.5 + ẋ+ ẏ ≤ 0

(b) Location `2.

(c) Convex Hull.

Fig. 4.2: Elimination of unprimed variables before merging of the locations.

In other words, we merge the dynamics of multiple locations in two steps.
We first over-approximate the original dynamics in every concrete location by
quantifying away unprimed variables, i.e., we obtain a constraint reasoning
only about derivatives (see Figure 4.2). Secondly, we define abstract dynamics
by constructing a convex hull of the constraints computed in the first step.
If an abstract location is a singleton, i.e., |α−1(`#)| = 1, we just keep its
original dynamics.

48 4 Assume Guarantee Abstraction Refinement for Hybrid Automata

Algorithm 3 Compositional analysis of H1||H2

Input: Hybrid automata H1 and H2

Output: Is the composed system H1||H2 safe?
1: H#

2 := ConstructAbstraction (H2)
2: while true do
3: π# := Analysis (H1||H#

2)
4: if π# is empty then
5: return “System is safe”
6: else
7: SP := SpuriousnessAnalysis (H1,H2,H#

2 , π
#)

8: if SP is empty then
9: return “System is unsafe”

10: else
11: H#

2 := Refinement (H#
2 ,SP)

12: end if
13: end if
14: end while

We observe that by construction the set of reachable states of the ab-
stract automaton H# leads to an over-approximation compared to the states
reachable by the concrete automaton H. Therefore, the following proposition
holds:

Proposition 4.4. Let H# be a location-merging abstraction of the concrete
hybrid automaton H. Then the non-reachability of the bad location `bad in
H# implies its non-reachability also in the concrete automaton H.

4.1.2 Compositional Analysis

Our compositional analysis is illustrated in Algorithm 3. In order to sim-
plify the presentation we consider a case of a system consisting of two com-
ponents H1 and H2, where H1 is a plant and H2 is a controller. However,
the scheme is applicable to systems with more than two components [16].

In the following we provide a conceptual description of the algorithm.
The algorithm checks whether the bad state Sbad can be reached by the
system H1||H2.The algorithm starts by computing an abstraction of H2 in
the function ConstructAbstraction (line 1). For more details on the
abstraction construction see Section 4.1.1. The algorithm iteratively refines
the original abstraction (lines 2–14). Note that in the worst case we will end
up with the original system. However, in many cases we will need to refine
only a part of the system (see Section 4.3 for the detailed discussion). In every
refinement iteration the algorithm proceeds as follows. First, the state space
of the abstract system H1||H#

2 is analyzed in the function Analysis (line 3).
This function returns an abstract bad path or “empty” if no such path has

4.1 Compositional Framework for Hybrid Automata 49

Algorithm 4 Spuriousness analysis

Input: Concrete automaton H1, concrete automaton H2 and its abstract version H#
2 and

abstract bad path π# = s#0 , . . . , s
#
m−1 in the state space of H1||H#

2 .
Output: Information about the possible splitting points store or empty set if the abstract

bad path π# is concretizable
1: SP := ∅
2: Push (Lwaiting , (α

−1(s#0) ∩ Sinit(H1||H2), 0))
3: while Lwaiting 6= ∅ do
4: (scurr, i) := GetNext (Lwaiting)
5: s′curr := ContSuccessors (scurr)
6: Push (Lpassed , s

′
curr)

7: if i = m− 1 then
8: if s′curr is a symbolic error state then
9: return empty set, i.e., concrete bad state found

10: else
11: Store the abstract bad path π# and the corresponding concrete path π ending

in s′curr into SP
12: end if
13: end if
14: S′ := DiscreteSuccessors (s′curr) ∩ α−1(s#i+1)
15: if S′ is empty then
16: Store the abstract bad path π# and the corresponding concrete path π ending in

s′curr into SP
17: else
18: Push (Lwaiting , S

′ \ Lpassed , i+ 1)
19: end if
20: end while
21: return SP

been found. If no abstract bad path has been found, we can conclude that also
the original system is safe as we consider only over-approximations (line 5).
Otherwise, the algorithm proceeds in the function SpuriousnessAnalysis
(line 7) with the spuriousness analysis of the found abstract bad path π#.
The function SpuriousnessAnalysis returns the information on how to
refine H#

2 or “empty” if the abstract path π# can be concretized. In the

latter case, we exit with status “System is unsafe” (line 9). Otherwise, H#
2 is

refined in the function Refinement based on the structure of the abstract
bad path gained during the spuriousness analysis.

4.1.3 Spuriousness Check

In this section, we consider the function SpuriousnessAnalysis (see

Algorithm 4) in more detail. Given an abstract bad path π# = s#
0 , . . . , s

#
m−1,

the function enumerates concrete paths corresponding to π# and looks for
the ones which end up in a bad state. The enumeration of concrete paths of

50 4 Assume Guarantee Abstraction Refinement for Hybrid Automata

the composed automaton H1||H2 along the abstract path π# is organized in
a breadth-first fashion. In particular, we make use of two lists: Lwaiting and
Lpassed . Lwaiting stores symbolic states which still have to be considered and
Lpassed stores symbolic states which have already been considered and thus
do not have to be visited again. The data structure SP stores information
relevant for the refinement step. In particular, tuples (π#, π), where π is a
path in the concrete state space which does not belong to α−1(π#), are kept
in SP. In other words, in the last symbolic state s|π|−1 of π we cannot take
any discrete transition which would lead to some concrete state represented
by an abstract state s#

|π|. Therefore, a tuple (π#, π) essentially provides a

possible reason for the spuriousness of π with respect to π#. We will use this
information to refine the abstract component H#

2 (see Section 4.1.4).
The algorithm starts by pushing the concrete initial states which corre-

spond to the first abstract symbolic state s#
0 in Lwaiting (line 2). It is im-

portant to mention that α−1 concretizes only the part of the symbolic state
relevant to H#

2 . This property also holds for the algorithm described in Sec-
tion 4.1.4. Note that we furthermore store the position of the abstract state
which corresponds to the considered concrete symbolic state in the waiting
list (we start with s#

0 and thus the position is 0). We will consequently use
this information to compute the discrete symbolic successors of a given sym-
bolic state which correspond to the analyzed bad path π#. In lines 3–20 the
concrete state space is iteratively explored in a breadth-first manner. Ev-
ery iteration consists of the following steps. First, the next tuple (scurr, i)
is picked from the waiting list Lwaiting (line 4), where scurr is a symbolic
state and i shows its position with respect to the abstract path. Afterwards,
the continuous successor, i.e., a symbolic state reflecting the states reach-
able according to the continuous dynamics, is computed and added to the
passed list Lpassed (lines 5–6). If the end of the abstract path is reached then
the intersection with the bad state is checked (lines 8–10). If the end of the
abstract path is reached, but no intersection with the bad state is detected,
we store both the abstract and concrete paths in SP in order to use this
information in the refinement step. If the algorithm is still in the middle
of the abstract bad path, it moves on to the computation of the concrete
symbolic states which correspond to the abstract bad path (line 14). We
achieve this by computing discrete successors and intersecting them with the
concrete states represented by the next symbolic state on the abstract path.
Note that the position i allows the algorithm to easily find the next abstract
symbolic state on the path with respect to the currently considered concrete
state.

4.1 Compositional Framework for Hybrid Automata 51

If the set of discrete successors is empty, we say that a possible splitting
point has been found. In other words, we could refine the abstract location `#i
of s#

i = (`#i , R
#
i) by splitting it (see Section 4.1.4). We store the abstract bad

path and the concrete path we have considered up to now into SP (line 16).
Otherwise, we add the discrete state into the waiting list Lwaiting (line 18).
After having analyzed all concrete paths corresponding to π#, the function
SpuriousnessAnalysis returns SP. It is only possible to report that the
considered abstract bad path is not concretizable after having considered all
possible concrete paths corresponding to it. Thus, the algorithm does not
stop after discovering a particular splitting point, but just stores it for the
later reuse during the refinement.

While mapping an abstract bad path to a concrete one, Algorithm 4 refers
to the functions ContSuccessors and DiscreteSuccessors which are
applied to concrete symbolic states. Thus, if the function Spuriousness-
Analysis declares some abstract bad path π# to be genuine by finding
its concrete counterpart π, then we can automatically conclude that the
standard SpaceEx reachability algorithm would also have reported π to be
a bad path. Therefore, our framework provides the same level of precision
as the standard SpaceEx reachability algorithm. Finally, we note that the
full concretization of a symbolic path is known to be a highly nontrivial
problem. Once a concrete symbolic bad path is found with our approach,
further concretization to hybrid automaton trajectories can be achieved using
techniques from optimal control such as the one proposed in the work by
Zutshi et al. [70].

4.1.4 Refinement Algorithm

The refinement algorithm Refinement uses SP in order to appropriately
refine the abstractionH#

2 in a compositional way. The data structure SP con-
tains information about multiple possible splitting points. For the refinement
we choose a tuple (π#, πmax) ∈ SP which maximizes the length of the con-
crete path π over all the elements of SP. Intuitively, by choosing a tuple with
this property, we ensure that πmax cannot be extended for all concrete paths
which correspond to π#. Let the abstract bad path π# = s#

0 , . . . , s
#
i , . . . , s

#
n

and the concrete path πmax = s0, . . . , si, . . . , sm (m ≤ n), where si = (`i, Ri)

and s#
i = (`#i , R

#
i). Furthermore, `i = (`

(1)
i , `

(2)
i), where `

(1)
i and `

(2)
i are lo-

cations of H1 and H2, respectively. The location of the abstracted composed

automaton H1||H#
2 is given by the tuple `#i = (`

(1)
i , `

#(2)
i). Depending on

the location partitioning of H#
2 the refinement algorithm distinguishes three

cases:

52 4 Assume Guarantee Abstraction Refinement for Hybrid Automata

1. |α−1(`
#(2)
m)| > 1, i.e., the abstract location corresponding to the last

concrete location can be split:

The refinement algorithm proceeds by splitting the abstract location `
#(2)
m

of H#
2 into two locations: α−1(`

#(2)
m)\`(2)

m and `
(2)
m , where `

(2)
m is a location

ofH2 corresponding to the concrete symbolic state sm = ((`
(1)
m , `

(2)
m), Rm).

2. |α−1(`
#(2)
m)| = 1 and |α−1(`

#(2)
m+1)| > 1, i.e., the abstract location of H#

2

corresponding to the last concrete location cannot be split, whereas the
successor abstract location still comprises multiple locations:

The refinement algorithm splits `
#(2)
m+1 into α−1(`

#(2)
m+1) \ `′ and `′, where

`′ = {`|` ∈ `#(2)
m+1, ` is a target location of discrete transition from `

#(2)
m }.

In other words, we look for locations in `
#(2)
m+1 which have incoming tran-

sitions from `
#(2)
m and split them apart. Note that in this case we do not

look at the transition guard and any other continuous artifacts.

3. |α−1(`
#(2)
m)| = 1 and |α−1(`

#(2)
m+1)| = 1, i.e., neither the abstract location

corresponding to the last concrete location nor its successor can be split:
The algorithm iterates over the abstract path and looks for a abstract
state in H#

2 with a location which still can be split, i.e., we look for i

s.t. i < m ∧ |α−1(`
#(2)
i)| > 1. The location `

#(2)
i is split into locations

α−1(`
#(2)
i) \ `(2)

i and `
(2)
i , where `

(2)
i is a location of H2 corresponding to

si = ((`
(1)
i , `

(2)
i), Ri).

Therefore, during the refinement process, we only refer to the locations of
the abstracted component H#

2 , i.e., we consider the projection of the found

path to H#
2 . The refinement algorithm as described above also has a progress

property:

Proposition 4.5 (Progress property). The size of the location partition-
ing increases by one location after every application of the refinement algo-
rithm over cases 1–3.

Proof. By construction, the number of locations in H#
2 increases by one

in cases 1 and 2 after every refinement iteration. In case 3 the refinement
can be only done under the assumption that there exists an index i s.t.

i < m∧ |α−1(`
#(2)
i)| > 1 holds. This statement is true as the opposite would

mean that the whole abstract bad path π# only consists of concrete states.
This in turn would lead to the fact that π# is already a concrete path to the
bad state. The function Refinement is, however, called only for abstract
bad paths which were found to be spurious. ut

This proposition lets us conclude that Algorithm 3 terminates after a
finite number of iterations after having considered the original system in the

4.2 Related Work 53

worst case. By combining this result with Proposition 4.4 and rule ASym,
we can derive the following soundness and relative completeness results:

Theorem 4.6 (Soundness). If our compositional framework is able to
prove that H1||A cannot reach the (abstract) error states, then the composi-
tion H1||H2 is safe, that is, it cannot reach the (concrete) error states.

Theorem 4.7 (Relative Completeness). If our compositional framework
is able to find a symbolic error path in H1||A which is not spurious, then
there exists a concrete symbolic error path in the composition H1||H2, too.

The existence of a symbolic error path does not necessarily imply the
existence of an error trajectory (due to the undecidability of the reachability
problem for affine hybrid automata). This is why we call the above result
(for symbolic paths) relative completeness.

4.2 Related Work

The framework developed by Pasareanu et al. [57] enables automated com-
positional verification using rule ASym. In that work, both assumptions and
properties are expressed as finite state automata. The framework uses the
L* [9] automata-learning algorithm to iteratively compute assumptions in the
form of deterministic finite-state automata. Other learning-based approaches
for automating assumption generation for rule ASym have been suggested as
well [7]. All these approaches were done in the context of transition systems,
not for hybrid automata as we do here.

Several ways to compute abstractions of hybrid automata have been pro-
posed. Alur et al. [2] propose to use a variant of predicate abstraction to
construct a hybrid automaton abstraction. In a slightly different setting, Ti-
wari [67] suggests to use Lie derivatives to generate useful predicates. Both
mentioned approaches essentially reduce the analysis of a hybrid automaton
to the level of a discrete transition system. Jha et al. [46] partially eliminate
continuous variables in the system under consideration. Prabhakar et al. [62]
propose the use of CEGAR for initialized rectangular automata (IRA), where
the abstractions reduce the complexity of both the continuous and the dis-
crete dynamics. In this thesis, we use a similar idea, but apply it to the more
general class of affine hybrid automata, and even more importantly, we ex-
tend it to a compositional verification framework. Finally, Doyen et al. [33]
take an affine automaton, and, through hybridization, obtain its abstraction
in the form of a rectangular automaton with larger discrete space. We do the
opposite: we take an affine automaton, and construct a much smaller linear
hybrid automaton.

54 4 Assume Guarantee Abstraction Refinement for Hybrid Automata

4.3 Evaluation

4.3.1 Benchmarks

For the evaluation of our approach we have extended the switched buffer
network benchmark [40]. The system under consideration consists of mul-
tiple tanks connected by channels. The channels are used to transport the
liquid stored in the tanks. There are two special tanks: the liquid enters the
network through the initial tank and is transported towards the sink tank.
We consider properties reasoning about the fill level of the sink tank.

The rate of change of the fill level fT of a tank T , depends on the rates
of inflow vin i and the rates of outflow vout j of the liquid, where vin i is the
velocity at which the liquid flows into the tank of the i-th input channel,
and vout j is the velocity at which the liquid flows out of the tank for the
j-th output channel. Therefore, the evolution of the fill level of the tank T
is described by the differential equation ḟT =

∑
i vin i −

∑
j vout j , where i

and j range over incoming and outgoing channels of T , respectively. Note
that due to fine-granular modelling of tanks and channels this benchmark
class exhibits a large number of continuous variables. In particular, in our
benchmark suite the number of continuous variables is in the range from 17
to 21 for the buffer networks with up to 4 tanks, whereas it is well-known that
the analysis complexity of hybrid automata rapidly grows with the number
of variables in the system under consideration.

We extend the switched buffer network [40] by the model of a complex
stratified controller. The controller is organized in a number of phases of
some given length, where multiple options (governing the modes of particular
channels) are available in every phase. After having finished the last phase
the controller returns to the first one. The controller can open/close channels
and adjust the throughput values at every step. We consider the following
modes of controller operations:

1. Throughput provided by an interval (“No Dynamics”): when the channel
is activated, its throughput v is constrained by the inequality vmin ≤ v ≤
vmax.

2. Throughput evolving at a constant rate (“Constant Dynamics”): the
throughput is defined by the differential equation of the form v̇ = c
for some constant c.

3. Throughput evolving according to affine dynamics v̇ = c(vtarget − v)
(“Affine Dynamics”): the controller provides a target throughput velocity
vtarget and some constant factor c. According to this dynamics the chan-
nel opens gradually with the opening speed decaying towards the target
velocity.

4.3 Evaluation 55

0 20 40 60 80 100
0

5

10

15

20

25

30

(a) Original system.

0 20 40 60 80 100
0

5

10

15

20

25

30

(b) Initial abstraction.

Fig. 4.3: Fill level of the sink tank for instance 4 vs. time

4.3.2 Experiments

We have implemented our approach in SpaceEx [39]. The experiments were
conducted on a machine with an Intel Core i7 3.4 GHz processor and with 16
GB of memory. In the following, we report the results for our compositional
analysis implemented in SpaceEx. We compare the analysis results of the
original concrete system and the compositional analysis. For both settings,
we compare the number of iterations of SpaceEx and the whole analysis run-
time in seconds (see Table 4.1). The best results are highlighted in bold. We
analyze 12 structurally different benchmark instances. For each of them we
vary forbidden states and in this way end up with 36 different benchmark
settings. We also vary controller dynamics. In particular, we provide 12 in-
stances for each of the modes “No Dynamics”, “Constant Dynamics” and
“Affine Dynamics”. The number of continuous variables varies in the consid-
ered benchmark instances from 17 to 21 variables. The initial abstraction is
generated by merging some of the strata in the controller.

We observe that our compositional reasoning algorithm generally boosts
the run time compared to the analysis of the original system. For example, in
instance 4 (system is safe) the analysis of the concrete system takes around
609 seconds compared to around 158 seconds with the compositional analysis.
The speed-up is justified by the smaller branching factor due to location
merging. In Figure 4.3a and Figure 4.3b the fill level of sink tank vs. time
for the original system and the initial abstraction are plotted. Figure 4.3b
particularly shows that multiple “thin” flow-pipes are merged into a couple
of “thick” ones, i.e., the system stops differentiating between some options
in the controller.

Furthermore, we remark that our compositional algorithm shows promis-
ing results also in the falsification setting, i.e., when the bad state is reach-

56 4 Assume Guarantee Abstraction Refinement for Hybrid Automata

Res. Tanks Vars. Phases Refs. It. (u) It. (m) Time (u) Time (m)

No Dynamics

1 safe 3 17 2 (5,1) 0 4640 253 779.754 14.692
2 unsafe 3 17 2 (5,1) 0 2555 191 299.437 35.370
3 safe 3 17 2 (5,1) 1 4640 1744 796.218 191.841

4 safe 3 17 4 (6,1,2,1) 0 3242 1115 608.796 157.924
5 unsafe 3 17 4 (6,1,2,1) 0 2410 756 196.461 66.740
6 safe 3 17 4 (6,1,2,1) 2 3242 1648 639.838 254.653

7 safe 4 21 2 (5,1) 0 2345 690 2162.273 621.137
8 unsafe 4 21 2 (5,1) 0 1348 483 1139.365 479.811
9 safe 4 21 2 (5,1) 1 2345 1001 2164.069 937.064

10 safe 4 21 4 (4,1,2,1) 0 1361 394 1327.062 406.592
11 unsafe 4 21 4 (4,1,2,1) 0 1070 316 502.992 303.988
12 safe 4 21 4 (4,1,2,1) 1 1361 684 1174.735 700.072

Constant Dynamics

13 safe 3 17 4 (2,1,5,1) 0 1386 424 90.457 21.484
14 unsafe 3 17 4 (2,1,5,1) 0 461 232 18.773 10.807
15 safe 3 17 4 (2,1,5,1) 2 1386 1261 81.076 77.938

16 safe 3 17 6 (2,1,6,1,2,1) 0 1989 1027 146.726 63.878
17 unsafe 3 17 6 (2,1,6,1,2,1) 0 809 352 32.961 14.279
18 safe 3 17 6 (2,1,6,1,2,1) 2 1989 2041 142.385 250.451

19 safe 4 21 4 (2,1,4,1) 0 1293 787 1350.973 1318.623
20 unsafe 4 21 4 (2,1,4,1) 0 1080 682 1429.120 1298.147
21 safe 4 21 4 (2,1,4,1) 1 1293 814 1579.792 1197.098

22 safe 4 21 6 (2,1,4,1,2,1) 0 903 563 1255.978 1140.114
23 unsafe 4 21 6 (2,1,4,1,2,1) 0 798 510 1230.193 1141.791
24 safe 4 21 6 (2,1,4,1,2,1) 1 903 581 1365.629 1318.049

Affine Dynamics

25 safe 3 17 4 (2,1,5,1) 0 7747 1168 1544.363 86.046
26 unsafe 3 17 4 (2,1,5,1) 0 5103 1042 939.430 100.871
27 safe 3 17 4 (2,1,5,1) 1 7747 6214 1669.268 1240.215

28 safe 3 17 6 (2,1,6,1,2,1) 0 6129 2760 717.462 231.727
29 unsafe 3 17 6 (2,1,6,1,2,1) 0 5382 2397 639.342 203.143
30 safe 3 17 6 (2,1,6,1,2,1) 7 6129 15068 706.960 2158.671

31 safe 4 21 4 (2,1,4,1) 0 1718 1451 3603.238 3125.016
32 unsafe 4 21 4 (2,1,4,1) 0 1692 1392 3776.840 3247.464
33 safe 4 21 4 (2,1,4,1) 1 1718 2559 4372.284 3805.045

34 safe 4 21 6 (2,1,4,1,2,1) 0 983 642 1382.567 1078.893
35 unsafe 4 21 6 (2,1,4,1,2,1) 0 922 611 1206.011 1213.798
36 safe 4 21 6 (2,1,4,1,2,1) 1 983 755 1442.506 1321.658

Table 4.1: Experimental results for the switched buffer benchmark. Abbrevi-
ations: #: benchmark instance number, Res.: result of the system analysis,
i.e., whether the bad state can be reached, Tanks: number of tanks in the in-
stance, Vars.: number of continuous variables in the system, Phases: number
of phases in the controller and number of options in every phase, Refs.: num-
ber of refinement steps, It. (u): number of SpaceEx iterations when analyzing
the concrete (unmerged) system, It. (m): number of SpaceEx iterations in
scope of the compositional analysis, Time (u): total time in seconds of the
analysis of the concrete system, Time (m): total time in seconds of the com-
positional analysis.

4.4 Conclusion 57

able. In instance 5, our approach reduces the run-time from around 196 sec-
onds for the concrete system to only 67 seconds in scope of the compositional
framework.

The necessity to refine the abstraction, in case a spurious abstract bad
path has been discovered, can generally be handled efficiently by our frame-
work, e.g., in instance 6 our approach takes around 254 seconds (including
two refinement steps) compared to 640 seconds for the concrete system. How-
ever, due to an unfortunate choice of the abstract bad path, we might need
to refine an excessive number of times (instance 30) which in turn decreases
the overall performance.

4.4 Conclusion

In this chapter, we have adapted the idea of compositional analysis to the
domain of hybrid automata. We have presented an abstraction based on
location merging. The abstract location invariant is computed by taking a
convex hull of the concrete locations to be merged. The abstract continuous
dynamics are computed by eliminating the state variables and computing a
convex hull.

5

Hybrid Planning

Planning in hybrid domains is a challenging problem that has found increas-
ing attention in the planning community. In addition to classical planning,
hybrid domains allow for modelling continuous behavior with continuous
variables that evolve over time. Such problems frequently occur in practice,
e. g., in robotics or embedded systems. Furthermore, real-world scenarios
must take into account that exogenous events may happen, as a consequence
or independently of the plan actions. PDDL+ [37] is the PDDL extension for
modelling such domains through the use of continuous processes and events.

Planning in hybrid domains is challenging because apart from the state
explosion caused by discrete state variables, the continuous variables cause
the reachability problem undecidable [1]. From a practical point of view,
various planning algorithms and tools with different features and limitations
have emerged [58, 56, 55, 27, 66, 31]. However, only TM-LPSAT [66] and
UPMurphi [31] can deal with the full feature range of PDDL+, and both
suffer from scalability issues.

From an abstract point of view, it is well known that hybrid planning
domains are related to the formalism of hybrid automata [42] studied in
model checking. In the last years, powerful model checking techniques and
tools based on, e. g., SMT [23] and symbolic search [38, 39], have been de-
veloped for this formalism. Apparently, algorithms based on such techniques
can possibly be beneficial for planning in hybrid domains as well, and might
particularly help to tackle the limitations of currently available planning sys-
tems with respect to the supported PDDL+ feature range. However, despite
the relationship of hybrid planning domains and hybrid automata, these
techniques have not been applied for planning in hybrid domains so far.
The main obstruction to this synergy is the lack of a common modelling
language, which makes it difficult to share benchmarks and to foster the
cross-fertilization between these two areas.

60 5 Hybrid Planning

In this chapter, we make a first step in bridging the gap between these
two worlds. We provide a formal translation from PDDL+ to the formalism
of hybrid automata [21]. The translation provides an over-approximation of
the PDDL+ semantics, which is sufficient to prove plan non-existence in un-
solvable domains. In addition, we identify a subset of PDDL+ features for
which our translation is exact and can be applied for finding hybrid plans.
In contrast to the class of hybrid automata that has been used to define
the semantics of PDDL+ [37], our translation obeys the standard seman-
tics of hybrid automata. A case study with the SpaceEx model checker [39]
shows considerable improvements in scalability compared to the Colin and
UPMurphi planner, and extends the class of tractable problems. Overall,
our translation is supposed to build a solid basis for using hybrid system
model checking tools for dealing with hybrid domains, thus extending the
planning-as-model-checking paradigm [24] to the domain of hybrid systems.

The remainder of the chapter is organized as follows. We introduce the
PDDL+ language in Section 5.1. Afterwards, we move on to the discussion
of the semantical issues raised by PDDL+ in Section 5.2. In Section 5.3, we
present our translation from PDDL+ to the formalism of hybrid automata.
This is followed by the case study in Section 5.4. Finally, we conclude the
chapter in Section 5.5.

5.1 The PDDL+ Language

In this section, we provide some additional background and a description of
the PDDL+ language we consider throughout the chapter. PDDL+ supports
the representation of domains with a mixed discrete-continuous dynamics,
providing a flexible model of continuous change. In particular, it allows to
model exogenous events to reflect changes that are initiated by the environ-
ment. PDDL+ is built on top of PDDL 2.1 and introduces the new constructs
of processes and events.

Definition 5.1 (Planning Instance). A planning instance is a pair I =
(Dom,Prob), where Dom = (Fs,Rs,As,Es,Ps, arity) is a tuple consisting
of a finite set of function symbols Fs, a finite set of relation symbols Rs,
a finite set of (durative) actions As, a finite set of events Es, a finite set of
processes Ps, and a function arity mapping all symbols in Fs ∪ Rs to their
respective arities.

The triple Prob = (Os, Init , G) consists of a finite set of domain objects
Os, the initial state Init, and the goal specification G.

For a given planning instance Π, a state of Π consists of a discrete com-
ponent, described as a set of propositions P , and a numerical component,

5.2 Semantical Issues Raised by PDDL+ 61

described as a vector of real variables v. Instantaneous actions are described
through preconditions (which are conjunctions of propositions in P and/or
numeric constraints over v, and define when an action can be applied) and
effects (which define how the action modifies the current state). Instanta-
neous actions and events are restricted to the expression of discrete change.
Events have preconditions as for actions, but they are used to model ex-
ogenous change in the world, therefore they are triggered as soon as the
preconditions are true. A process is responsible for the continuous change of
variables, and is active as long as its preconditions are true.

Durative actions have three sets of preconditions, representing the con-
ditions that must hold when it starts (denoted by pre` and prenum

` to dis-
tinguish between preconditions on propositions and on numeric constraints,
respectively), the invariant that must hold throughout its execution (proposi-
tional invariant pre↔ and numeric invariant prenum

↔), and the conditions that
must hold at the end of the action (prea and prenum

a). Similarly, a durative
action has three sets of effects: effects that are applied when the action starts
(eff+
` , eff−` , effnum

` denoting predicates that are added, deleted, and numeric
effects, respectively), effects that are applied when the action ends (eff+

a ,
eff−a , effnum

a) and a set of continuous numeric effects effnum
↔ which are applied

continuously while the action is executing. A graphical representation of a
durative action is shown in Figure 5.1.

pre`∪ prenum` pre↔∪ prenum↔ prea∪ prenuma

eff+
`∪ eff−`∪ effnum

` effnum
↔ eff+

a∪ eff−a∪ effnum
a

A

Fig. 5.1: PDDL durative action

A durative action A has a duration dur(A) which can either be fixed in
the model or left to the planner decision.

5.2 Semantical Issues Raised by PDDL+

Although parts of PDDL+ are defined in terms of hybrid automata, there
are several semantical issues raised by PDDL+ which do not allow to apply
the translation given by Fox and Long [37] to common model checking tools
– in particular, their translation does not obey the standard semantics of
hybrid automata (see Definition 2.1). In the formal definition of PDDL+ [37],
assumptions about the class of domains that can be modelled and about plan
validity [36] are made. In the following, we briefly recall these assumptions.

62 5 Hybrid Planning

No Moving Targets: The no moving targets rule states that no two
actions are allowed to simultaneously make use of a value if one of the two
is accessing the value to update it (i. e., the value is a moving target for
the other action to access). As a consequence of this restriction, plans must
respect the ε-separation requirement, i. e., interfering actions must be sepa-
rated by at least a time interval of length ε. The planner Colin [27] makes a
strictly stronger assumption, extending this requirement also to actions that
are not mutex. In our work, we make the same assumption as Colin. We
remark that ε-separation is not respected in the standard hybrid automata
semantics, where transitions can start or end at the same instant and hence
can compromise plan validity.

Events: Events are particularly challenging as they could trigger an in-
finite cascading sequence of events. To address this issue, we make the same
restrictions proposed by Fox and Long [37]. Firstly, each event must delete
one of its own preconditions and thus avoid self triggering. Secondly, plan-
ning instances must be event-deterministic: In every state in which two events
e1 and e2 are applicable, the transition sequences e1 followed by e2 and e2

followed by e1 are both valid and reach the same resulting state.
Actions and events reveal the key difference between state changes that

are deliberately planned (actions), and those that are caused by changes in
the world (events). While the planner can decide whether or not to fire an ap-
plicable action (actions are may transitions), events have to be fired as soon
as they become enabled (events are must transitions). This distinction com-
plicates the relationship between PDDL+ and standard hybrid automata,
where such a distinction is not present and all transitions are may transi-
tions.

Concurrent Processes: It is possible that several processes are active
at the same time, affecting the value of the same variable. To handle such
concurrent processes, the continuous effects affecting the rate of change of a
variable are combined by simply summing the effects of the processes. Al-
though the handling of concurrent processes is very simple in PDDL+, it is
a problematic feature in the standard hybrid automata setting, as each loca-
tion in a hybrid automaton contains a single flow describing the continuous
effects corresponding to that location. Therefore, combining the effects of
concurrent processes would generate an explosion of the number of locations
in the hybrid automaton.

PDDL+ Semantics: Fox and Long [37] give a formal semantics of
PDDL+ providing a mapping between PDDL+ domain and hybrid au-
tomata. However, Fox and Long make the key assumption to have hybrid
automata where conditional flows can be defined. In any given location, in-
stead of having a fixed rate of change for each variable, the rate of change

5.3 Modeling PDDL+ as Hybrid Automata 63

of each variable depends on which processes are active in the current state.
Conditional flows allow for easily modelling concurrent processes by using
different rates of change depending on the current state.

Similarly, conditional flows are used to model events. To model events, we
must force the corresponding event automaton to leave the current location
(and to enter the location corresponding to the event’s effect) as soon as it
is triggered. Hence, the issue is to model must transitions. For this purpose,
Fox and Long use the time slippage mechanism. A time-slip variable T is
used to measure the amount of time that elapses between the preconditions
of an event becoming true and the event triggering. The value of T must
be 0 in any valid planning instance. To this aim, each location contains an
invariant enforcing this requirement. Furthermore, the conditional flow is
extended with the additional time-slippage flow that sets Ṫ = 1 whenever
the preconditions of any event become true. However, conditional flows are
not part of standard hybrid automata semantics. Furthermore, the issue of
modelling the ε-separation is not addressed.

5.3 Modeling PDDL+ as Hybrid Automata

Based on the discussed semantical issues raised by PDDL+, we provide a for-
mal translation of hybrid planning domains to standard hybrid automata to
overcome these limitations. For the description of our translation, we assume
a grounded planning instance I and use the following naming conventions:
Function symbols are denoted with continuous variables, whereas (Boolean)
grounded predicates are denoted with discrete variables. In particular, for
the rest of the chapter, we assume the actions in I to be grounded. The
translation from I to a network of hybrid automata is based on translating
grounded actions, discrete and continuous variables, events and processes to
corresponding hybrid automata. This translation is described in the next
sections.

5.3.1 Discrete Variable Automata

Common model checkers like SpaceEx do not support discrete variables in
their input models. Hence, we represent discrete variables with a variant of
their domain-transition graphs [41]. A Boolean variable v is translated to
automaton Hv with two locations that reflect the true and false values of
v. Transitions between locations reflect how values can be changed through
actions. More precisely, the synchronization labels reflect the discrete pre-
conditions and effects of actions that have v in their precondition and effect,

64 5 Hybrid Planning

respectively. Roughly speaking, labels c that do not occur in all transitions of
Hv possibly require changing Hv’s location in order to be able to synchronize
with c (thus representing a precondition). Similarly, labels c that occur in
at least one non-self loop transition of Hv reflect that c can possibly change
the value of v (thus representing an effect). We will make the description
of synchronization labels more precise when introducing the translation for
actions.

5.3.2 Continuous Variable Automata

Continuous variables x are translated to automata Hx as follows. For all
possible flows ẋ = k of x, Hx contains a location annotated with ẋ = k.
There is a transition between two locations if it is possible to change the
flow of x accordingly via an action. Furthermore, for all actions that affect
the particular flow, there is a self-loop in the corresponding location. As an
example, consider the automaton in Figure 5.2.

ẋ = 0 ẋ = k
acc

k := k + 1

Fig. 5.2: Example variable automaton Hx

The automatonHx models the behavior of the acceleration x of an engine.
There are two possible flows for x, namely ẋ = 0 (corresponding to the case
that the engine is turned off), and ẋ = k (corresponding to the case where
the engine is turned on, and the current acceleration is k). In case the engine
is turned on, we can apply the action accelerate (represented as label acc)
to increase k.

5.3.3 Durative Action Automata

Grounded durative actions are translated to automata Ha such that Ha
ensures the ε-separation property, and such that the (propositional and nu-
meric) preconditions, effects and invariants of a are respected when a is
starting, running and ending, respectively. For a given action a, Ha has the
overall structure given in Figure 5.3. The guards and updates of Ha’s tran-
sitions are denoted with g and ξ according to Definition 2.1. The locations
are annotated with the corresponding invariant I . Synchronization labels are
annotated with a bar.

5.3 Modeling PDDL+ as Hybrid Automata 65

off

int1

on

int2

I : Ṫ = 0

I : Ṫ = 1 ∧ T ≤ ε

I : Ṫ = 1 ∧ T ≤ dur(a) ∧ prenum
↔

I : Ṫ = 1 ∧ T ≤ dur(a) + ε

lockstart
a

releasestart
a

g : T = ε

lockend
a

g : T = dur(a)

releaseend
a

g : prenuma ∧ T = dur(a) + ε g : prenum` ; ξ : T := 0

¬pre↔

Fig. 5.3: Structure of action automaton Ha

The automaton Ha uses a local continuous variable T that models a clock
to keep track of action a’s duration. Based on T , Ha simulates the execution
of a as follows.

1. The off location models that a is not running. The invariant Ṫ = 0
reflects that the clock T is stopped as well. (See below for a description
of the self-loop.)

2. The int1 location and the transition from off to int1 model the behavior
of a in the time interval [0, ε] (for brevity, we assume that a is started
at time point 0). The invariant of int1 ensures that T is running, and
that int1 is left after at most ε time units. The guard g of the transition
leading to int1 reflects a’s numeric precondition prenum` , and its update ξ
resets the clock T to zero. In addition, through synchronization, the label

lock start
a ensures the ε-separation property during the starting phase of

a, as well as the required behavior of a’s preconditions and effects:

• In order to ensure the ε-separation property, lock start
a locks the overall

system in the sense that no other automaton can start (or end, see
below) as long as Ha is in the int1 location. To achieve this, a global
lock automaton synchronizes with this label, with the property that
such a synchronization is no longer possible for starting or ending
other actions until the lock is released. To make this more clear, the
lock automaton (simplified such that it only contains transitions for
the starting phase of a) is depicted in Figure 5.4 (see below for a
description of the corresponding release label).

• lock start
a reflects the check for the propositional precondition pre` as

well as the check for the invariant pre↔ (recall that pre↔ must hold
during the execution of a, hence it must hold at the start of a). These
preconditions are satisfied iff a synchronization with corresponding
discrete variable automata is possible. For example, if pre` requires

66 5 Hybrid Planning

free lock
lockstart

a

releasestart
a

Fig. 5.4: Global lock automaton

a variable v to be true, this is reflected in the corresponding variable
automaton Hv as depicted on the left in Figure 5.5, where we observe
that v must be in the true location such that a synchronization is
possible.

false

true

lockstart
a

false

true

releasestart
a

Fig. 5.5: Example variable automata Hv and Hw

• lock start
a reflects the continuous numerical effects described by effnum

↔ ,
which affects the flow of its continuous variables by synchronizing with
the corresponding continuous variable automata (e. g., by increasing
k in Figure 5.2, where acc is replaced by the lock label).

3. The transition from int1 to on models the time point ε. According to the
guard T = ε, it must be taken after exactly ε time units. Furthermore,

its label releasestart
a releases the system via the lock automaton, allowing

other actions to start or end again. In addition, releasestart
a reflects the

start effects eff+
` , eff−` and effnum

` by synchronizing with the corresponding
variable automata. For example, if eff+

` sets a variable w from false to true,
this is reflected in Hw as shown on the right in Figure 5.5.

4. The on location models a’s behavior in the time interval [ε, dur(a)].
The invariant of on reflects the duration of a and the numeric invari-
ant prenum

↔ . We remark that without further knowledge, doing so would
require prenum↔ to hold in the time interval [ε, dur(a)], whereas the orig-
inal PDDL+ semantics would only require it to hold in the interval
[ε, dur(a)−ε]. However, due to the ε-separation, the behavior of numeric
invariants with strict and non-strict inequalities is identical, and we can
hence interpret strict as non-strict inequalities without loss of generality.

5.3 Modeling PDDL+ as Hybrid Automata 67

5. Propositional invariants of actions a must hold as long as Ha is in its on
location. To model this, we include all synchronization labels that possi-
bly violate a’s propositional invariant into the synchronization alphabet
of Ha (e. g., for a propositional invariant p = true, we include all labels
that represent effects of actions that set p to false). This causes all ac-
tions that execute an effect that violates a’s propositional invariant to
synchronize with a transition in Ha. However, as there is no such outgo-
ing synchronization transition of the on location, actions cannot violate
a’s propositional invariant as long as Ha is running. To be able to syn-
chronize with such actions when a is not running, we introduce self-loops
to Ha’s off location that allow corresponding synchronization. In more
detail, the self-loop with label ¬pre↔ in the off location represents a set
of self-loops with labels for actions that violate a constraint in pre↔. Note
that we do not need such self-loops for int1 (and int2) because int1 (and
int2) model the locked system where no other action may start or end.

6. The int2 location and the transition from on to int2 models the behavior

of a in the interval [dur(a), dur(a)+ε] when a is finished. The label lockend
a

locks the system to ensure the ε-separation during the ending phase of a,
and reflects prea via synchronization (analogously to the start of a). In
addition, it reflects the end of the continuous numeric change reflected
by effnum

↔ . For example, if k has been increased by effnum
↔ in Figure 5.2

at the start of a, k is decreased again to reset the flow before a has been
started (a corresponding self-loop is omitted in Figure 5.2).

7. The transition from int2 to off models the end of the execution of a. Its
guard checks both a’s duration T = dur(a) + ε and precondition prenum

a .

The label releaseend
a releases the system (indicating that a is finished),

and reflects the effect updates eff+
a , eff−a , and effnum

a .

We observe that, by construction, the PDDL+ semantics of durative ac-
tions a is reflected by the hybrid automaton Ha. In particular, Ha respects
the ε-separation property.

5.3.4 Instantaneous Action Automata

Instantaneous actions a are modelled as automata Ha as follows. Similarly
to durative actions, Ha contains an off and on location and respects the ε-
separation. However, in contrast to durative actions, instantaneous actions do
not feature durations (as suggested by the name), and hence, we do not need
additional intermediate locations in the automaton model. In more detail,
the transition from off to on is labelled with a corresponding locka label,
which locks the system via the global lock automaton, and reflects the guard

68 5 Hybrid Planning

and effects analogously to the lock start
a labels for durative actions (we do not

need to distinguish between start and end labels because a is instantaneous).
In addition, the transition features a numerical guard constraint that reflects
the numerical precondition prenum

` of a. Finally, Ha stays for ε time in on,
and releases the system by returning to off.

5.3.5 Event and Process Automata

Events and processes require a must semantics, as they trigger as soon as they
become enabled. In this thesis, we over-approximate this must behavior with
the (common) may behavior, which allows for more behavior and is hence
sufficient for proving plan non-existence. Generally, over-approximations al-
low for at least the same (and possibly more) behavior as the original model.
(Realizing must behavior more precisely is an important issue for future
work).

Events are essentially instantaneous actions with must behavior. Hence,
in our translation, we over-approximate events with instantaneous action
automata.

Processes p are modelled as automata Hp that consist of an off and
on location similar to events. There is a transition from off to on which
synchronizes over the propositional precondition constraints pre`. This is an
over-approximation because the transition is not forced to be taken as soon as
possible. Furthermore, the on location features an invariant induced by the
numeric precondition prenum

` . Finally, there are transitions from on to off for
each negated constraint in prenum

` (reflecting that the numeric invariant gets
violated), and a transition that allows for returning in case the propositional
invariant is set to false (again yielding an over-approximation). The effects of
p are reflected in the same way as for continuous variable automata (e.g., see
again Figure 5.2). This translation allows modelling of concurrent processes
in the standard hybrid automata semantics without the need of conditional
flows.

5.3.6 Overall Translation Scheme

For a given planning instance, the overall translation is defined by a network
of hybrid automata which contains a translated automaton for all discrete
and continuous variables, durative and instantaneous actions, processes and
events. The resulting system of hybrid automata is an over-approximation
of the original PDDL+ planning instance.

5.4 Case Study 69

Proposition 5.2. Let I be a planning instance, and let N be the translated
network of hybrid automata. Then for all plans π in I, there is a correspond-
ing sequence σ of transitions in N such that for each time point t, the values
of the discrete and continuous variables of π and σ are equal in t.

Proof. (sketch) By construction, the semantics of variables and actions is
reflected exactly by the translated automata. For processes and events,
must transitions are approximated with may transitions, yielding an over-
approximation.

The over-approximation is sufficient to prove plan non-existence. In the
more simple case where no processes and events are present, the back direc-
tion holds as well. For such planning instances I, the translation can also be
applied for finding plans because transition sequences in N are guaranteed
to correspond to applicable action sequences in I.

5.4 Case Study

As a case study, we apply our translation with the SpaceEx model checker [39],
which is considered as a state-of-the art tool in the area of hybrid systems
model checking. The search engine of SpaceEx performs symbolic search,
which is suited for effectively proving plan non-existence. Proving plan non-
existence has recently found increasing attention for classical planning [11],
and becomes even harder for planning in hybrid domains. For a particular
class of planning domains, SpaceEx is guaranteed to find valid plans in solv-
able domains as well (see below). We consider several instances (with growing
size) of the generator [45] and the car domains [37], which are standard and
challenging benchmarks in the hybrid planning community. We compare our
translation for SpaceEx with the state-of-the-art planners Colin [27] and UP-
Murphi [30]. The experiments are performed on an x64 Linux machine with
6 GB of RAM and an Intel i7 CPU (2.20GHz).

The results for unsolvable instances are reported in Table 5.1. Colin can
prove plan non-existence for a restricted class of domains, namely when there
is a tight deadline on reaching the goals (which sets a finite horizon for the
plan), and each ground action can only be applied a finite number of times.
UPMurphi cannot provide any guarantees about plan non-existence as it re-
lies on discretizing the time line and the continuous variables prior to search.
In other words, plans might exist for a finer discretization than actually used
by UPMurphi. The results for UPMurphi are included in Table 5.1 for the
sake of completeness. We observe that our translation with symbolic search
is able to scale better than both Colin and UPMurphi. In particular, our

70 5 Hybrid Planning

approach is able to effectively prove plan non-existence in the car domain,
which is out of scope for both UPMurphi (as discussed) and Colin (as Colin
is not able to deal with processes and events, which are present in the car
domain).

D Tool 1 2 3 4 5 6 7 8 9 10
Gen SpaceEx 0.01 0.09 0.83 4.25 58.61 1214.35 - - - -
Gen CoLin 0.01 0.1 1.7 32.48 761.28 - - - - -
Gen UPMur 0.9 29.42 - - - - - - - -
Car SpaceEx 0.98 4.91 9.46 19.65 37.19 59.40 112.43 210.47 350.14 574.71
Car CoLin x x x x x x x x x x
Car UPMur 36.01 445.23 - - - - - - - -

Table 5.1: Results in seconds for unsolvable instances. Instance numbers cor-
respond to number of tanks (generator) and maximum acceleration (car).
Abbrev.: ’-’: tool still running after 30 minutes, ’x’: tool cannot handle the
problem.

The symbolic search performed by SpaceEx induces an over-approximation
of the original system, which is suited for effectively proving plan non-
existence. In contrast, applying symbolic search to find plans might result in
spurious plans, i. e., plans that do not correspond to valid plans in the con-
crete. However, for the subclass of planning problems that do neither feature
processes nor events (according to Proposition 5.2) and do only include sim-
ple differential equations of the form ẋ = c, the search algorithm by SpaceEx
guarantees that a path to a goal corresponds to a valid plan as well. These
requirements are satisfied by the generator, but not by the car domain. The
results are depicted in Table 5.2.

Domain Tool 1 2 3 4 5 6 7 8 9 10
Generator SpaceEx 0.01 0.03 0.07 0.1 0.19 0.28 0.45 0.65 0.93 1.22
Generator CoLin 0.01 0.09 0.2 2.52 32.62 600.58 - - - -
Generator UPMurphi 0.2 18.2 402.34 - - - - - - -
Car SpaceEx 0.01 0.01 0.01 0.03 0.04 0.05 0.06 0.07 0.08 0.1
Car CoLin x x x x x x x x x x
Car UPMurphi 28.44 386.5 - - - - - - - -

Table 5.2: Results in seconds for solvable instances

Table 5.2 shows scalability improvements for solvable instances as well.
As discussed, the results for the car domain must be taken with care (as the
found paths might be spurious), but are included for the sake of complete-
ness. In contrast, for the generator domain, the found paths by SpaceEx are
guaranteed to correspond to valid plans. We observe that SpaceEx outper-

5.5 Conclusion 71

forms the other tools by several orders of magnitude in terms of scalability.
We remark that our current implementation does not yet extract these plans,
but this step is purely technical and efficiently implementable (essentially a
call to an SMT solver). Overall, we observe that symbolic search is benefi-
cial for both proving plan non-existence as well as for finding paths to goal
states. Generally, symbolic search seems to be well suited for hybrid domains
because it handles several paths simultaneously.

5.5 Conclusion

We have presented a formal translation from PDDL+ to the standard for-
malism of hybrid automata. Our translation forms the basis for bridging the
gap between planning in hybrid domains and model checking of hybrid au-
tomata. Our experimental evaluation has shown that the translation can be
effectively applied to proving plan non-existence in challenging hybrid do-
mains. In particular, our translation extends the class of tractable planning
domains for proving plan non-existence as shown for the car domain. For a
particular class of hybrid domains, SpaceEx can also be applied for effectively
finding plans. For future research, the precise modelling of must transitions
in order to avoid spurious plans should be addressed. Furthermore, it will be
interesting to apply the translation also with other model checking tools in
order to exploit their particular strengths. Generally, we hope that our work
forms the basis to eventually allow the planning community to systematically
benefit from the large body of research in the area of hybrid automata.

6

Conclusion and Future Research

In this thesis, we have presented a number of abstraction-based approaches
to analyze hybrid automata. Our approaches strongly improve the analysis
scalability, which in turn makes many models algorithmically tractable com-
pared to already existing methods. Our abstractions are generic, i.e. they
do not rely on any domain-specific information, and can be computed com-
pletely automatically.

We have discussed how abstractions can be utilized for guided search in
the state space of hybrid automata. We have presented two abstraction-based
heuristics. The first one, the box-based heuristic [20], works by estimating
the distance between the abstraction of a symbolic state and a bad state.
It has shown good results on systems with mainly continuous behavior. In
addition, we have presented a further heuristic which combines the ideas of
a pattern database and a coarse-grained space abstraction [18, 17]. This ab-
straction makes use of an internal polytope representation in SpaceEx based
on the support function representation. The analysis of hybrid automata
becomes particularly expensive while reasoning about models consisting of
networks of hybrid automata. Therefore, at the next stage, we have con-
sidered the compositional analysis of hybrid automata. We have extended
an assume guarantee abstraction refinement (AGAR) framework to hybrid
automata [19]. This extension enables an efficient decomposition of complex
networks consisting of multiple components. An important ingredient of the
AGAR framework is the abstraction used to simplify parts of the network. In
our work, we have introduced an abstraction based on location merging. We
approximate the continuous dynamics by using quantifier elimination and
hence end up in the class of linear hybrid automata. We have implemented
our techniques within the hybrid model checker SpaceEx. In order to eval-
uate our approaches, we have considered a number of challenging hybrid
automata benchmark models. Finally, we have considered the application of

74 6 Conclusion and Future Research

model checking techniques to hybrid planning. We have presented a trans-
lation from hybrid planning problems described by the PDDL+ language
to networks of hybrid automata [21]. Our translation forms the basis for
bridging the gap between planning in hybrid domains and model checking
of hybrid automata. Our experimental evaluation on common hybrid plan-
ning benchmarks has shown that the translation can be effectively applied
to proving plan non-existence in challenging hybrid domains.

The framework of hybrid automata provides a way to model highly com-
plex systems from different domains. We note that a modelling task itself
poses a challenge. On the one hand, this task becomes especially hard, e.g.,
in the biological domain, where a researcher should already have an in-depth
knowledge of biology while working on the model. On the other hand, we ex-
pect the analysis of the model to greatly benefit from the domain knowledge
as biological models typically follow some structural patterns. In our work,
we focus on generic approaches which do not make use of any background
information. For the future, it will be productive to investigate how domain
specific knowledge can be exploited in order to additionally facilitate hybrid
automata analysis. In this thesis, we have seen that the knowledge transfer
between the two research areas of model checking and automated planning
can be very fruitful. Still, there is a lot of work to be done in order to bring
together different communities working on similar problems. In particular,
we expect synergies to arise at the interface of symbolic model checking and
robotics. For example, there is a large potential of using the symbolic ab-
stractions to guide the numerical simulations in the flavour of RRTs [60].
Finally, it will be instructive to investigate how reachabilty algorithms for
systems with affine dynamics might be used as part of reachability analysis
of hybrid automata exhibiting non-linear differential equations.

References

1. R. Alur, C. Courcoubetis, N. Halbwachs, T. Henzinger, P. Ho, X. Nicolin, A. Olivero,
J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical
Computer Science, 138:3–34, 1995.

2. R. Alur, T. Dang, and F. Ivančić. Reachability analysis of hybrid systems via predicate
abstraction. In Hybrid Systems: Computation and Control (HSCC 2002), volume 2289
of LNCS, pages 35–48. Springer, 2002.

3. R. Alur, T. Dang, and F. Ivancic. Counter-example guided predicate abstraction of
hybrid systems. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2003), volume 2619 of LNCS, pages 250–271. Springer, 2003.

4. R. Alur, T. Dang, and F. Ivancic. Progress on reachability analysis of hybrid systems
using predicate abstraction. In Hybrid Systems: Computation and Control (HSCC
2003), volume 2623 of LNCS, pages 4–19. Springer, 2003.

5. R. Alur and T. Henzinger. Modularity for timed and hybrid systems. In Concurrency
Theory (CONCUR 1997), volume 1243 of LNCS, pages 74–88. Springer, 1997.

6. R. Alur, T. Henzinger, and P. H. Ho. Automatic symbolic verification of embedded
systems. IEEE Transactions on Software Engineering, 22:181–201, 1996.

7. R. Alur, P. Madhusudan, and W. Nam. Symbolic compositional verification by learning
assumptions. In Computer Aided Verification (CAV 2005), volume 3576 of LNCS,
pages 548–562. Springer, 2005.

8. K. Anderson, R. Holte, and J. Schaeffer. Partial pattern databases. In Symposium on
Abstraction, Reformulation, and Approximation (SARA 2007), volume 4612 of LNCS,
pages 20–34. Springer, 2007.

9. D. Angluin. Learning regular sets from queries and counterexamples. Information and
Computation, 75(2):87–106, 1987.

10. E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of nonlinear
systems. Acta Informatica, 43(7):451–476, 2007.

11. C. Bäckström, P. Jonsson, and S. St̊ahlberg. Fast detection of unsolvable planning
instances using local consistency. In Symposium on Combinatorial Search (SoCS 2013).
AAAI Press, 2013.

12. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate ab-
straction of C programs. In ACM Conference on Programming Language Design and
Implementation (PLDI 2001), pages 203–213. ACM Press, 2001.

13. E. Bartocci, F. Corradini, M. R. Di Berardini, E. Entcheva, S. Smolka, and R. Grosu.
Modeling and simulation of cardiac tissue using hybrid I/O automata. Theoretical
Computer Science, 410(410):3149–3165, 2009.

76 References

14. D. Bertsekas, A. Nedi, A. Ozdaglar, et al. Convex analysis and optimization. 2003.
15. A. Bhatia and E. Frazzoli. Incremental search methods for reachability analysis of

continuous and hybrid systems. In Hybrid Systems: Computation and Control (HSCC
2004), volume 2993 of LNCS, pages 451–471. Springer, 2004.

16. M. G. Bobaru, C. S. Pasareanu, and D. Giannakopoulou. Automated assume-guarantee
reasoning by abstraction refinement. In Computer Aided Verification (CAV 2008),
volume 5123 of LNCS, pages 135–148. Springer, 2008.

17. S. Bogomolov, A. Donzé, G. Frehse, R. Grosu, T. T. Johnson, H. Ladan, A. Podelski,
and M. Wehrle. Guided search for hybrid systems based on coarse-grained space
abstractions. Submitted to International Journal on Software Tools for Technology
Transfer (STTT).

18. S. Bogomolov, A. Donzé, G. Frehse, R. Grosu, T. T. Johnson, H. Ladan, A. Podelski,
and M. Wehrle. Abstraction-based guided search for hybrid systems. In Model Checking
Software (SPIN 2013), volume 7976 of LNCS, pages 117–134. Springer, 2013.

19. S. Bogomolov, G. Frehse, M. Greitschus, R. Grosu, C. S. Pasareanu, A. Podelski, and
T. Strump. Assume-guarantee abstraction refinement meets hybrid systems. In Haifa
Verification Conference (HVC 2014), volume 8855 of LNCS, pages 116–131. Springer,
2014.

20. S. Bogomolov, G. Frehse, R. Grosu, H. Ladan, A. Podelski, and M. Wehrle. A box-
based distance between regions for guiding the reachability analysis of SpaceEx. In
Computer Aided Verification (CAV 2012), volume 7358 of LNCS, pages 479–494.
Springer, 2012.

21. S. Bogomolov, D. Magazzeni, A. Podelski, and M. Wehrle. Planning as model checking
in hybrid domains. In AAAI Conference on Artificial Intelligence (AAAI 2014), pages
2228–2234. AAAI Press, 2014.

22. O. Bournez, O. Maler, and A. Pnueli. Orthogonal polyhedra: Representation and
computation. In Hybrid Systems: Computation and Control (HSCC 1999), volume
1569 of LNCS, pages 46–60. Springer, 1999.

23. A. Cimatti, E. M. Clarke, F. Giunchiglia, and M. Roveri. NuSMV: A new sym-
bolic model checker. International Journal on Software Tools for Technology Trans-
fer (STTT), 2(4):410–425, 2000.

24. A. Cimatti, M. Roveri, and P. Traverso. Strong planning in non-deterministic domains
via model checking. In Artificial Intelligence Planning Systems (AIPS 1998), pages
36–43. AAAI Press, 1998.

25. E. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstrac-
tion refinement. In Computer Aided Verification (CAV 2000), volume 1855 of LNCS,
pages 154–169. Springer, 2000.

26. E. M. Clarke, O. Grumberg, and D. Peled. Model checking. MIT press, 1999.
27. A. J. Coles, A. Coles, M. Fox, and D. Long. COLIN: Planning with continuous linear

numeric change. Journal of Artificial Intelligence Research (JAIR), 44:1–96, 2012.
28. J. C. Culberson and J. Schaeffer. Pattern databases. Computational Intelligence,

14(3):318–334, 1998.
29. T. Dang and T. Nahhal. Coverage-guided test generation for continuous and hybrid

systems. Formal Methods in System Design (FMSD), 34(2):183–213, 2009.
30. G. Della Penna, D. Magazzeni, and F. Mercorio. A universal planning system for

hybrid domains. Applied Intelligence, 36(4):932–959, 2012.
31. G. Della Penna, D. Magazzeni, F. Mercorio, and B. Intrigila. UPMurphi: A tool for

universal planning on PDDL+ problems. In International Conference on Automated
Planning and Scheduling (ICAPS 2009). AAAI Press, 2009.

32. A. Donzé and G. Frehse. Modular, hierarchical models of control systems in SpaceEx.
In European Control Conference (ECC 2013), pages 4244 – 4251. IEEE, 2013.

References 77

33. L. Doyen, T. A. Henzinger, and J.-F. Raskin. Automatic rectangular refinement of
affine hybrid systems. In Formal Modelling and Analysis of Timed Systems (FOR-
MATS 2005), volume 3829 of LNCS, pages 144–161. Springer, 2005.

34. S. Edelkamp, S. Leue, and A. Lluch-Lafuente. Directed explicit-state model checking
in the validation of communication protocols. International Journal on Software Tools
for Technology Transfer (STTT), 5(2):247–267, 2004.

35. A. Fehnker and F. Ivančić. Benchmarks for hybrid systems verification. In Hybrid
Systems: Computation and Control (HSCC 2004), volume 2993 of LNCS, pages 381–
397. Springer, 2004.

36. M. Fox, R. Howey, and D. Long. Validating plans in the context of processes and
exogenous events. In AAAI Conference on Artificial Intelligence (AAAI 2005), pages
1151–1156. AAAI Press, 2005.

37. M. Fox and D. Long. Modelling mixed discrete-continuous domains for planning.
Journal of Artificial Intelligence Research (JAIR), 27:235–297, 2006.

38. G. Frehse. PHAVer: algorithmic verification of hybrid systems past HyTech. Inter-
national Journal on Software Tools for Technology Transfer (STTT), 10(3):263–279,
2008.

39. G. Frehse, C. Le Guernic, A. Donzé, S. Cotton, R. Ray, O. Lebeltel, R. Ripado, A. Gi-
rard, T. Dang, and O. Maler. SpaceEx: Scalable verification of hybrid systems. In Com-
puter Aided Verification (CAV 2011), volume 6806 of LNCS, pages 379–395. Springer,
2011.

40. G. Frehse and O. Maler. Reachability analysis of a switched buffer network. In Hybrid
Systems: Computation and Control (HSCC 2007), volume 4416 of LNCS, pages 698–
701. Springer, 2007.

41. M. Helmert. The Fast Downward planning system. Journal of Artificial Intelligence
Research, 26:191–246, 2006.

42. T. A. Henzinger. The theory of hybrid automata. In Proceedings of the 11th Annual
IEEE Symposium on Logic in Computer Science (LICS 1996), pages 278–292, 1996.

43. R. C. Holte, J. Grajkowski, and B. Tanner. Hierarchical heuristic search revisited. In
Symposium on Abstraction, Reformulation and Approximation (SARA 2005), volume
3607 of LNCS, pages 121–133. Springer, 2005.

44. J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to automata theory,
languages, and computation. Addison Wesley, 2006.

45. R. Howey, D. Long, and M. Fox. VAL: Automatic plan validation, continuous effects
and mixed initiative planning using PDDL. In IEEE International Conference on Tools
with Artificial Intelligence (ICTAI 2004), pages 294–301. IEEE, 2004.

46. S. K. Jha, B. H. Krogh, J. E. Weimer, and E. M. Clarke. Reachability for linear hybrid
automata using iterative relaxation abstraction. In Hybrid Systems: Computation and
Control (HSCC 2007), volume 4416 of LNCS, pages 287–300. Springer, 2007.

47. K. H. Johansson, M. Egerstedt, J. Lygeros, and S. Sastry. On the regularization of
zeno hybrid automata. Systems & Control Letters, 38(3):141–150, 1999.

48. T. T. Johnson, J. Green, S. Mitra, R. Dudley, and R. S. Erwin. Satellite rendezvous
and conjunction avoidance: Case studies in verification of nonlinear hybrid systems.
In Formal Methods (FM 2012), volume 7436 of LNCS, pages 252–266. Springer, 2012.

49. H. K. Khalil. Nonlinear Systems. Prentice Hall, 2002.
50. S. Kupferschmid, J. Hoffmann, and K. G. Larsen. Fast directed model checking via

Russian doll abstraction. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2008), volume 4963 of LNCS, pages 203–217. Springer, 2008.

51. S. Kupferschmid and M. Wehrle. Abstractions and pattern databases: The quest for
succinctness and accuracy. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2011), volume 6605 of LNCS, pages 276–290. Springer, 2011.

78 References

52. A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis. In
Hybrid Systems: Computation and Control (HSCC 2000), volume 1790 of LNCS, pages
202–214. Springer, 2000.

53. B. J. Larsen, E. Burns, W. Ruml, and R. Holte. Searching without a heuristic: Efficient
use of abstraction. In AAAI Conference on Artificial Intelligence (AAAI 2010). AAAI
Press, 2010.

54. C. Le Guernic and A. Girard. Reachability analysis of linear systems using support
functions. Nonlinear Analysis: Hybrid Systems, 4(2):250–262, 2010.

55. H. X. Li and B. C. Williams. Generative planning for hybrid systems based on flow
tubes. In International Conference on Automated Planning and Scheduling (ICAPS
2008), pages 206–213. AAAI Press, 2008.

56. D. V. McDermott. Reasoning about autonomous processes in an estimated-regression
planner. In International Conference on Automated Planning and Scheduling (ICAPS
2003), pages 143–152. AAAI Press, 2003.

57. C. S. Pasareanu, D. Giannakopoulou, M. G. Bobaru, J. M. Cobleigh, and H. Bar-
ringer. Learning to divide and conquer: applying the L* algorithm to automate assume-
guarantee reasoning. Formal Methods in System Design (FMSD), 32(3):175–205, 2008.

58. J. S. Penberthy and D. S. Weld. Temporal planning with continuous change. In
AAAI Conference on Artificial Intelligence (AAAI 1994), pages 1010–1015. AAAI
Press, 1994.

59. E. Plaku, L. Kavraki, and M. Vardi. Hybrid systems: From verification to falsification.
In Computer Aided Verification (CAV 2007), volume 4590 of LNCS, pages 463–476.
Springer, 2007.

60. E. Plaku, L. E. Kavraki, and M. Y. Vardi. Hybrid systems: from verification to falsifi-
cation by combining motion planning and discrete search. Formal Methods in System
Design (FMSD), 34(2):157–182, Oct. 2008.

61. A. Pnueli. In transition from global to modular temporal reasoning about programs.
In Logics and Models of Concurrent Systems, pages 123–144. Springer, 1989.

62. P. Prabhakar, P. S. Duggirala, S. Mitra, and M. Viswanathan. Hybrid automata-based
CEGAR for rectangular hybrid systems. In Verification, Model Checking, and Abstract
Interpretation (VMCAI 2013), volume 7737 of LNCS, pages 48–67. Springer, 2013.

63. K. Qian and A. Nymeyer. Guided invariant model checking based on abstraction and
symbolic pattern databases. In Tools and Algorithms for the Construction and Analysis
of Systems (TACAS 2004), volume 2988 of LNCS, pages 497–511. Springer, 2004.

64. S. Ratschan and J.-G. Smaus. Finding errors of hybrid systems by optimising an
abstraction-based quality estimate. In Tests and Proofs (TAP 2009), volume 5668 of
LNCS, pages 153–168. Springer, 2009.

65. R. C. Robinson. An introduction to dynamical systems: continuous and discrete, vol-
ume 19. American Mathematical Society, 2012.

66. J.-A. Shin and E. Davis. Processes and continuous change in a SAT-based planner.
Artificial Intelligence, 166(1-2):194–253, 2005.

67. A. Tiwari. Abstractions for hybrid systems. Formal Methods in System Design
(FMSD), 32(1):57–83, 2008.

68. A. Tiwari and G. Khanna. Series of abstractions for hybrid automata. In Hybrid
Systems: Computation and Control (HSCC 2002), volume 2289 of LNCS, pages 465–
478. Springer, 2002.

69. M. Wehrle and S. Kupferschmid. Downward pattern refinement for timed automata.
To appear in International Journal on Software Tools for Technology Transfer (STTT),
2014.

70. A. Zutshi, S. Sankaranarayanan, J. Deshmukh, and J. Kapinski. A trajectory splic-
ing approach to concretizing counterexamples for hybrid systems. In Conference on
Decision and Control (CDC 2013), pages 3918–3925. IEEE, 2013.

