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a  b  s  t  r  a  c  t

Continuous-time  Markov  chain  (CTMC)  models  have  become  a central  tool  for  understanding  the  dynam-
ics  of  complex  reaction  networks  and  the  importance  of  stochasticity  in the  underlying  biochemical
processes.  When  such  models  are  employed  to answer  questions  in  applications,  in order  to ensure that
the model  provides  a sufficiently  accurate  representation  of  the real  system,  it  is  of  vital  importance
that  the  model  parameters  are  inferred  from  real measured  data.  This,  however,  is often  a  formidable
task  and  all  of the  existing  methods  fail  in one  case  or  the  other,  usually  because  the underlying  CTMC
model  is high-dimensional  and computationally  difficult  to  analyze.  The  parameter  inference  methods
that  tend  to  scale  best  in the  dimension  of  the  CTMC  are  based  on  so-called  moment  closure  approx-
imations.  However,  there  exists  a large  number  of different  moment  closure  approximations  and  it is
typically  hard  to say  a priori  which  of the  approximations  is the  most  suitable  for  the  inference  proce-
dure.  Here,  we  propose  a moment-based  parameter  inference  method  that  automatically  chooses  the

most appropriate  moment  closure  method.  Accordingly,  contrary  to  existing  methods,  the  user  is not
required  to be  experienced  in moment  closure  techniques.  In  addition  to  that,  our  method  adaptively
changes  the  approximation  during  the  parameter  inference  to  ensure  that  always  the  best  approxima-
tion  is  used,  even  in cases  where  different  approximations  are  best in  different  regions  of the  parameter
space.

©  2016  Elsevier  Ireland  Ltd.  All  rights  reserved.
. Introduction

With the advancement of measurement technologies for bio-
hemical processes in the last decades, quantitative mathematical
odeling of biochemical reaction networks has continuously

ncreased in importance (Bertaux et al., 2014; Neuert et al., 2013;
uess et al., 2015). Chemical reactions inside cells, where some
f the reacting species may  be present in very low amounts of
olecules, are inherently driven by random fluctuations (Hasty

t al., 2000; McAdams and Arkin, 1997; Samoilov and Arkin, 2006;
unsky et al., 2009). Accordingly, an accurate mathematical model

hould take this stochasticity into account. The most widely used
Please cite this article in press as: Schilling, C., et al., Adaptive moment c
BioSystems (2016), http://dx.doi.org/10.1016/j.biosystems.2016.07.00

lass of stochastic models in this context are continuous-time
arkov chains (CTMCs) (Goutsias and Jenkinson, 2013). The advan-

age of these models is that they are easy to formulate and can

∗ Corresponding author.
E-mail address: jakob.ruess@ist.ac.at (J. Ruess).

ttp://dx.doi.org/10.1016/j.biosystems.2016.07.005
303-2647/© 2016 Elsevier Ireland Ltd. All rights reserved.
be justified based on first principles (Gillespie, 1992). The major
drawback is that their analytical or computational analysis can be
extremely difficult, especially when more than just a few differ-
ent chemical species play a role for the reaction network. This is
because the chemical master equation (CME), which governs the
time evolution of the probability distribution of the CTMC, cannot
be solved for anything but the simplest systems and even approx-
imation techniques (Munsky and Khammash, 2006; Wolf et al.,
2010) tend to fail when the CTMC is high-dimensional. In such
cases, an alternative is to focus only on some low-order moments
of the probability distribution. Ordinary differential equations that
describe the time evolution of these moments can be derived from
the CME  (Engblom, 2006), but their solution typically requires some
kind of approximation (Ruess et al., 2011; Singh and Hespanha,
2006). These approximations, known as moment closure, are usu-
losure for parameter inference of biochemical reaction networks.
5

ally based on an assumption about the underlying probability
distribution and exist in many different varieties (Hespanha, 2008).
Often, for a given system and given model parameters, some of
these approximations provide good results whereas others fail

dx.doi.org/10.1016/j.biosystems.2016.07.005
dx.doi.org/10.1016/j.biosystems.2016.07.005
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
mailto:jakob.ruess@ist.ac.at
dx.doi.org/10.1016/j.biosystems.2016.07.005
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o be sufficiently accurate or fail entirely. Unfortunately, there
xists no approach for determining a priori which moment closure
echnique will provide the best approximation. In general, the only
pproach that is guaranteed to provide at least statistically exact
esults is to simply simulate the CTMC using a stochastic simula-
ion algorithm (SSA) (Gillespie, 1976) and to compute Monte Carlo
stimates of the system output of interest based on the simula-
ion results. To obtain precise estimates, however, a large number
f simulations may  be required, leading to a high computational
ost. For the forward analysis of a system, i.e. when the model
arameters are known, this is not always a serious problem. For
he reverse engineering task of identifying the model parameters
rom measured data, however, the CTMC needs to be analyzed
or many different parameter values in order to determine those
n best agreement with the measured data. Accordingly, for this
ask the computational cost of approaches based on stochastic
imulation (Lillacci and Khammash, 2013) is often prohibitively
arge.

In this paper, we propose an approach for parameter infer-
nce based on moment closure that is complemented by stochastic
imulation. In particular, the parameter inference is performed
ased on the computationally cheap moment closure approxima-
ion, whereas the stochastic simulation is employed whenever new
egions in the parameter space are explored, either to ensure that
he approximation is still sufficiently accurate, or to propose a new
pproximation that outperforms the previously used one. With this
pproach we are able to combine the computational advantages of
oment closure with the statistical exactness of SSA and obtain a
ethod that is both scalable and does not require a priori knowl-

dge of the performance of different moment closure techniques.
mportantly, the method is completely automated and chooses and
dapts the approximation from a precomputed library of moment
losure methods. Thus, the user only has to specify the model and
upply the data and, contrary to previous approaches (Kügler, 2012;
uess and Lygeros, 2015; Zechner et al., 2012), no expertise in the
nalysis of CTMCs is required.

The remaining paper is structured as follows. In Section 2,
e introduce biochemical reaction networks, the chemical master

quation and moment closure methods. In Section 3, we formulate
 maximum-likelihood estimation problem for the model param-
ters and describe previously published moment-based methods
or solving these problems. In Section 4, we propose our auto-

ated adaptive parameter inference method. In Section 5, we
tudy the performance of our method for some benchmark reac-
ion networks. Section 6 is devoted to a study of the computational
ost of our approach. Finally, in Section 7, we discuss our results
nd provide some concluding remarks.

. Stochastic modeling of biochemical reaction networks

Consider a biochemical reaction network consisting of m differ-
nt chemical species X1, . . .,  Xm that interact according to K different
eactions:

′
1kX1 + · · · + �′

mkXm �k−−−−−−−→�
′′
1kX1 + · · · + �

′′
mkXm,

k = 1, . . .,  K, (1)

here the coefficients �′
ik

and �′
ik

determine how many molecules
f the i-th species are consumed and produced in the k-th reac-
ion, respectively. Under the assumption that the reaction network
s well-stirred and in thermal equilibrium, it can be described

T

Please cite this article in press as: Schilling, C., et al., Adaptive moment c
BioSystems (2016), http://dx.doi.org/10.1016/j.biosystems.2016.07.00

y a continuous-time Markov chain X(t, �) = [X1(t, �)· · ·Xm(t, �)]
hat takes states x = [x1· · ·xm]

T ∈ N
m
0 (Gillespie, 1992). The tran-

ition probabilities of this CTMC are determined by the reaction
arameters � = [�1· · ·�K ]T ∈ (R+

0 )K and the kinetic rate law of the
 PRESS
s xxx (2016) xxx–xxx

reactions. Here, we  restrict our attention to mass action kinetics
and elementary chemical reactions (i.e. reactions of order at most
2). These assumptions simplify the computation of moments of
the CTMC. It should be noted, however, that they are not strictly
necessary for the results of this paper and are mainly imposed
because it is very unlikely that, in a three-dimensional space, more
than two  molecules meet at exactly the same time. Accordingly, any
more complicated biochemical reaction can essentially be decom-
posed into a series of elementary reactions whose reaction rates are
governed by the law of mass action. These assumptions lead to tran-
sition probabilities of the CTMC that are determined by propensity
functions of the form ak(x, �) = �khk(x), k = 1, . . .,  K, where hk(x) are
at most quadratic polynomials in x. The time evolution of the prob-
ability distribution of X(t, �) can then be described by the chemical
master equation:

ṗ(x, t) = −p(x, t)
K∑

k=1

ak(x, �) +
K∑

k=1

p(x − �k, t)ak(x − �k, �), (2)

where �k = [�1k · · · �mk]T, �ik = �
′′
ik

− �′
ik

, i = 1, . . .,  m,  and p(x, t) is
the probability P(X(t, �) = x) that x molecules of the m chemical
species are present at time t.

Since X(t, �) has a countably infinite state space, computing the
probabilities p(x, t) requires solving an infinite system of coupled
ordinary differential equations, which is generally not possible.
Approximate solutions can be obtained in some cases, for instance
by projection to a finite state space (Munsky and Khammash,
2006; Wolf et al., 2010), but we  will not discuss these approaches
here.

An alternative is to focus only on some low-order moments
of the probability distribution. Ordinary differential equations
describing their time evolution can be derived from the CME
(Engblom, 2006; Ale et al., 2013) and written as

�̇(t) = A(�)�(t) + B(�) �̄(t), (3)

where �(t) is a vector containing the (uncentered) moments up to
some desired order L and �̄(t) contains moments of order L + 1. Eq.
(3) shows that the time evolution of �(t) depends on moments of
higher order; hence �(t) cannot be computed without knowledge
of �̄(t). Accordingly, the open system of equations Eq. (3) is typically
replaced by an approximate closed system of equations

˙̃�(t) = A(�)�̃(t) + B(�)f (�̃(t)), (4)

where �̃(t) are approximations of �(t). The function f is usually
chosen according to an assumption on the underlying probabil-
ity distribution. Typical examples are to assume that the centered
moments (or cumulants) of order L + 1 are zero (Whittle, 1957;
Matis et al., 2010), or to choose f according to a log-normal dis-
tribution (Singh and Hespanha, 2006). In general, the choice of f is
made rather arbitrarily without actual knowledge of the underly-
ing distribution. Furthermore, whether a given closure will provide
good approximations depends on the system that is being stud-
ied, the model parameters, and the order L at which the moment
equations are closed. This makes it practically impossible for some-
one who is not an expert in the use of these methods to choose an
appropriate closure. Despite all this, moment closure methods have
been successfully applied for analyzing CTMCs, and specifically also
for parameter inference (Ruess and Lygeros, 2015; Zechner et al.,
2012; Lück and Wolf, 2016). The choice of the closure method used
in these references, however, was  based on trial and error and the
success of the performed studies accordingly required a portion of
losure for parameter inference of biochemical reaction networks.
5

luck.
An alternative approach for analyzing biochemical reaction

networks is by using a stochastic simulation algorithm (SSA). It is
straightforward to generate statistically exact sample paths x1(t),

dx.doi.org/10.1016/j.biosystems.2016.07.005
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 . .,  xn(t) of X(t, �) in this way. From these sample paths, estimators
f any system output, for instance some moments or the entire
robability distribution at a certain time point, can be constructed.
hile such an approach is easy to implement and can always be

sed, it comes with the major drawback that often a large number
f sample paths n is required to obtain precise estimates. This can
ake the use of stochastic simulation for reverse engineering tasks

omputationally prohibitively expensive.

. Moment-based parameter inference

In this section, we formulate the parameter inference problem
nd review previous methods that have been developed to solve it.
he goal in this paper is to estimate the reaction rate constants

 from measured data that is of the form y = {xj
1(ts), . . .,  xj

n(ts) |
 ∈ J, s = 1, . . .,  S} and corresponds to measuring the number of

olecules of each chemical species from index set J in n cells at
ach measurement time point ts, s = 1, . . .,  S. We  assume that all
easurements collected at different times and in different cells

re statistically independent. This is, for instance, the case for flow
ytometry data where the cells are discarded after being measured
o that two different measurements can never come from the same
ell. When measuring more than one species in the same experi-
ent, i.e. |J| > 1, the measurements of the different species that are

ollected at the same time and in the same cell will, however, be
orrelated. To simplify the presentation, we will first describe the
ase J = {j} where only a single species Xj is measured.

The task of identifying the model parameters from the data can
e posed as a maximum-likelihood estimation problem

MLE(y) = argmax
�

L(y, �), (5)

here y is the measured data and L(y, �) = p(y|�) is the likelihood of
he parameters �, i.e. the probability (density) of the data given that

 are the model parameters. Analytically computing the likelihood
s usually impossible, and accordingly, the optimization problem in
q. (5) is typically solved by iterative numerical evaluation of L(y, �)
or many different values of �. Unfortunately, evaluating the like-
ihood for given parameters � requires solving the CME with these
arameters, which, as discussed in the previous section, is often

mpossible or computationally expensive itself. For this reason, one
ption is to use sample moments of the data as measurements
nstead of the entire data (Zechner et al., 2012). For instance, one
an compute sample means �̂1(ts) and sample variances �̂2(ts),

 = 1, . . .,  S from the data y and treat the vector �̂:=
[
�̂(t1)· · · �̂(tS)

]T
,

here �̂(ts):=
[
�̂1(ts) �̂2(ts)

]
, as new data. In earlier publications

Zechner et al., 2012; Ruess et al., 2013), we have shown that the
robability density function p( �̂|�) of �̂ is given by

( �̂|�) =
S∏

s=1

p( �̂(ts)|�),

where p( �̂(ts)|�) = N(M(ts), �(ts)) (6)

nd

(ts) =
[

�1(ts)

�2(ts)

]

Please cite this article in press as: Schilling, C., et al., Adaptive moment c
BioSystems (2016), http://dx.doi.org/10.1016/j.biosystems.2016.07.00

nd

(ts) = 1
n

⎡
⎣ �2(ts) �3(ts)

�3(ts) �4(ts) − n − 3
n − 1

(�2(ts))
2

⎤
⎦ ,
 PRESS
s xxx (2016) xxx–xxx 3

where N  stands for the normal distribution, �1(ts) = �1(ts, �) is the
mean and �i(ts) = �i(ts, �), i = 2, 3, 4 are the centered moments of
the measured species Xj(ts, �) at time ts for model parameters �.
Since these moments can be computed from the solution of Eq.
(4), we  can use this result to approximately compute the likelihood
L(  �̂, �) = p( �̂|�) without having to solve the CME. Accordingly, we
can in principle solve the optimization problem in Eq. (5) using
�̂ instead of y to compute the maximum-likelihood estimator
�MLE( �̂).

However, there are two  practical problems in evaluating the
covariance matrix �(ts) = �(ts, �). The first is that moment clo-
sure typically does not preserve the properties of the underlying
stochastic process. This means that the relations between the
moments �i(ts, �), i = 1, . . .,  4 that ensure that �(ts, �) is positive
definite and a proper covariance matrix might be lost due to the
approximation. The second problem is that �(ts, �) depends on the
first four moments even if only the first two sample moments are
used as data. Consequently, moment closure methods of order less
than four cannot be used to evaluate the likelihood. To circumvent
these problems, we implemented a slightly different likelihood in
our algorithm. More specifically, we  estimate the covariance matri-
ces �(ts) from the data by computing empirical estimates of the
moments up to order four and plugging them into the above equa-
tion. This means that the covariance matrix is fixed throughout the
optimization problem and chosen as an estimate of the covariance
matrix �(ts, �) in Eq. (6) evaluated at the true unknown parameters,
i.e. as the covariance matrix to which the parameter dependent
covariance matrix �(ts, �) would converge when the parameter
search converges to the true parameters. Throughout this paper,
we will follow this strategy and denote by �data the moments
up to fourth order of the data, i.e. �data:=[�data(t1)· · ·�data(tS)]T ,
where �data(ts):=

[
�̂1(ts) �̂2(ts) �̂3(ts) �̂4(ts)

]
contains the first

four centered empirical moments of the data set at time ts. This
strategy is appropriate whenever sufficiently many cells are mea-
sured so that the moments up to order four can be estimated with
reasonable precision. For flow cytometry data, the number of cells
measured per time point typically ranges in the order of thousands
or even tens of thousands; hence sufficing precision is always guar-
anteed.

Extension to multi-dimensional measurements. The likelihood in Eq.
(6) is only valid for a single measured species. It can, however,
also be extended to more general settings where multiple chemi-
cal species are measured simultaneously in the same experiment
(e.g. by using different fluorescent markers for labeling different
proteins in flow cytometry experiments). In the following, we  con-
sider a case where two species are measured, i.e. J = {i, j} so that
Xi and Xj are the measured species. The data is then of the form

y =
{

{xi
1(ts), xj

1(ts)}, . . .,  {xi
n(ts), xj

n(ts)}, s = 1, . . .,  S
}

and the vec-

tor of sample moments becomes �̂:=
[
�̂(t1)· · · �̂(tS)

]T
, where at

each time point ts the sample means and variances of both species
and the sample covariance between the species are measured, i.e.

�̂(ts):=
[

�̂i
1(ts) �̂j

1(ts) �̂i
2(ts) �̂ij

2(ts) �̂j
2(ts)

]
.

It has previously been shown (Ruess et al., 2013) that in this case
the likelihood of the sample moments is given by

p( �̂|�) =
S∏

s=1

p( �̂(ts)|�), where p( �̂(ts)|�) = N(M(ts), �(ts))

(7)
losure for parameter inference of biochemical reaction networks.
5

M(ts) =
[

�i
1(ts) �j

1(ts) �i
2(ts) �ij

2(ts) �j
2(ts)

]T

dx.doi.org/10.1016/j.biosystems.2016.07.005
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nd

(ts) = 1
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

�i
2 �ij

2 �i
3 �i2j

3

· �j
2 �i2j

3 �ij2
3

· · �i
4 − n − 3

n − 1
(�i

2)
2

�i3j
4 − n − 3

n − 1
�i

2�ij
2

· · · �i2j2
4 − n − 2

n − 1
(�ij

2)
2 + 1

n − 1

· · · · 

here for simplicity we  omitted the lower left entries of the
ymmetric matrix �(ts) and the dependence of the moments
n �(ts) on the time point ts. The entries of �(ts) are func-
ions of the centered moments up to order four of the joint
istribution of Xi(ts) and Xj(ts). The notation has to be under-
tood as follows: lower case indices at � determine the order
f the moment; upper case indices determine the identity
f the moment, i.e. �i2j

3 refers to the third order moment

[(Xi(ts) − E[Xi(ts)])
2 · (Xj(ts) − E[Xj(ts)])] and �i2j2

4 refers to the

ourth order moment E[(Xi(ts) − E[Xi(ts)])
2 · (Xj(ts) − E[Xj(ts)])

2
]. In

ur algorithm, all the entries of �(ts) are estimated from the mea-
urements and collected in the vector �data, as already described
bove for the case of a single measured species.

. Adaptive approach for parameter inference

The drawback of the approach described in the previous section
s that a moment closure method has to be chosen in advance and
his closure will be used throughout the entire parameter search.
his leads to the problems that, on the one hand, it is a priori
ery difficult to choose the best closure and, on the other hand,
hich closure is best may  also be different for different parts of the
arameter space. The main idea of the method that we propose in
he following is to use a small number of simulated trajectories of
he system that are generated using a stochastic simulation algo-
ithm (SSA) in order to test different approximations during the
arameter space exploration. Specifically, whenever the param-
ter search leaves a certain area in parameter space, defined as
n �-neighborhood around the point at which the last SSA run
as carried out, new simulations are performed and all closure
Please cite this article in press as: Schilling, C., et al., Adaptive moment c
BioSystems (2016), http://dx.doi.org/10.1016/j.biosystems.2016.07.00

ethods from a predefined library are evaluated by comparing
he different approximations at the current point in parameter
pace to the simulation results. Importantly, all the approximate
oment systems, corresponding to closures of different types and

Fig. 1. Flowchart describing the high
 PRESS
s xxx (2016) xxx–xxx

�ij2
3

�j
3

�i2j2
4 − n − 3

n − 1
�i

2�j
2

j
2 �ij3

4 − n − 3
n − 1

�ij
2�j

2

�j
4 − n − 3

n − 1
(�j

2)
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

degrees, are precomputed only once, and thus new derivations of
the moment equations are not required during the search. To gen-
erate these systems we  make use of Hespanha’s StochDynTools
toolbox (Hespanha, 2007).

A flowchart describing our approach is given in Figure 1. We  now
explain the approach step by step using the pseudocode given in
Algorithm 1. The inputs of the algorithm are the CTMC model X(t, �),
parametrized by the reaction rate constants �, a set of ODE systems
CL = {c1(�), . . .,  cq(�)} corresponding to different approximations of
the moment dynamics obtained through various closures of dif-
ferent types and degrees, the centered moments up to the fourth
order �data of a measured data set Y, and a maximal number of
iterations imax that determines for how many steps in parameter
space the search is performed. The algorithm returns the max-
imum likelihood estimator �MLE. The core idea of our approach
works independently of the actual parameter search technique
used in the background. Thus, it can be applied in conjunction
with any standard optimization scheme used to minimize some
distance between model output and data (for instance simple gra-
dient descent). Accordingly, we focus on the adaptive update of
the closure method while abstracting from the actual details of
the parameter search for a fixed approximation by the function
NextParameter (line 18). It takes the current values of the parame-
ters �i and the chosen approximate ODE system cbest(�i) and moves
the search to the new parameters �i+1 according to some crite-
ria. In our implementation, we instantiate it with a Markov chain
Monte Carlo method and a Metropolis-Hastings sampler, based on
the likelihood in Eq. (6) (Zechner et al., 2012). Additionally, this
function also takes care of updating the value of the maximum
likelihood estimator �MLE based on the likelihood of the new param-
losure for parameter inference of biochemical reaction networks.
5

eters �i+1. The remaining pseudocode describes how and when
the used closure method is adjusted. We  first check whether the
current parameter values �i are still within the �-neighborhood
N�

(
�ref

)
, where �ref are the parameters at which the previous

-level workflow of our method.

dx.doi.org/10.1016/j.biosystems.2016.07.005
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imulation was performed (line 5). In our implementation, we
hoose a neighborhood in the form of a hyperrectangle of relative
ize N�(�ref) = {� | |� − �ref|k ≤ � · |�ref|k, k = 1, . . .,  K}. If �i ∈ N�

(
�ref

)
,

e directly proceed with the standard inference method in line 18,
elying on the ODE system cbest(�i) from the most recent evalua-
ion. Otherwise, stochastic simulation is employed with the current
arameter values �i to compute estimates of the moments �SSA(�i)
sing the function ComputeSSA (line 6), for which we utilize a
tandard implementation of Gillespie’s SSA in our implementation.
hese estimates are then compared to the approximations �ODE(�i)
btained with all the different closure methods using the function
omputeODE which numerically computes the solution of the sys-
em of ODEs c(�i) ∈ CL (lines 8–15). The best approximate system
best(�i) is chosen as the one that minimizes some distance Dist
etween estimation and approximation. In general, this distance
ould be determined in many different ways. In our implementa-
ion, we choose Dist as the likelihood of the estimated moments for
he measured species (Eq. (6)), i.e. we measure the performance of
he approximations by evaluating how precise the approximated

oments of the system output (not of the entire state) are. Finally,
e update the reference point �ref to �i (line 16) and the search

ontinues in the standard way until the next �-neighborhood is left.

lgorithm 1. Adaptive moment-based parameter inference algo-
ithm

nput: CTMC X(t, �), where � ∈ (R+
0 )K , data �data, maximum number of

iterations imax, and set of approximate moment systems CL = {c1(�), . . .,
cq(�)} obtained using different closure methods
utput: Maximum likelihood estimator �MLE

1: �1:=random initial parameter values
2:  �MLE := �1

3: �ref:= + ∞
4: for i := 1 to imax do

5:  if �i /∈ N�

(
�ref

)
then

6: �SSA(�i) := ComputeSSA(X(t, �i))
7: dbest:= + ∞
8: for all c(�i) ∈ CL do
9: �ODE(�i) := ComputeODE(c(�i))
0: d := Dist(�SSA(�i), �ODE(�i))
1: if d < dbest then
2: dbest := d
3:  cbest(�i) := c(�i)
4: end if
5: end for
6: �ref := �i

7: end if
8: 〈�i+1, �MLE〉 := NextParameter(�i , cbest(�i), �data, �MLE)
9:  end for
0: return �MLE

. Case studies

We  applied our inference method to several benchmark stochas-
ic reaction networks. In this section, we report some exemplary
esults. For all examples, to generate the set of approximate ODE
ystems CL we used derivative matching (dm), zero cumulants (zc),
ero variance (zv) moment closure, each with degree 2, 3, and 4, and
ow dispersion (ld) moment closure with degree 3 and 4 (we refer
he reader to the literature (Hespanha, 2008) for details).

xample 1. The first network is a model that has recently been used
o describe agricultural pests (Gillespie and Golightly, 2010; Parise
t al., 2015) but can also be regarded as a model of gene expression
iven by the following reactions:

∅ �1−−−−→N + C N
�2−−−−→2N + C
Please cite this article in press as: Schilling, C., et al., Adaptive moment c
BioSystems (2016), http://dx.doi.org/10.1016/j.biosystems.2016.07.00

N + C
�3−−−−→C C

�4−−−−→∅.

he produced protein is positively regulated by the current
mount of protein and negatively regulated (through an increased
 PRESS
s xxx (2016) xxx–xxx 5

degradation rate) by past amounts of protein (i.e. species C could
be regarded as an abstraction of a slow process that is activated
by N and leads to the production of proteases that degrade N).
We assume that N(0) = C(0) = 0, that the true parameters are given
by �1 = 0.03, �2 = 0.012, �3 = 0.25 × 10−4 and �4 = 0.003, and that
5000 cells are measured at the time points t1 = 100, . . .,  t9 = 900.
As settings for our algorithm we  use ε = 0.2 and perform 200
simulations whenever the search leaves an �-neighborhood, i.e. in
line 6 of Algorithm 1.

An exemplary run of our parameter search for imax = 2000 iter-
ations, started from random initial parameter values, is shown
in Figure 2. It can be seen that all the inferred parameters, i.e.
the maximum-likelihood estimates �MLE( �̂), agree with the true
parameter values up to negligible errors with basically no uncer-
tainty. The former is a sign that a precise moment closure method
exists for this example, whereas the latter stems from the large
number of measurements that we  assumed to be available. Fig. 3
shows that also the model predictions, computed with the inferred
parameters �MLE( �̂) and the best closure method, agree well both
with the data and with SSA estimates of mean and variance
obtained with the inferred parameters. We  can conclude that the
moment closure approximation is very precise and can match the
data up to very small errors.

To evaluate on the one hand how important it is to choose a
good approximation, and on the other hand whether it is neces-
sary to adaptively change the closure method during the search,
we perform the parameter inference with the same data and the
same algorithm, but fix an initial closure method and do not allow
the search to switch between different approximations (i.e. by
choosing ε = +∞). Table 1(a) compares the error in the inferred
parameters obtained from our approach to the error in the results
when the closure is fixed. It can be seen that for some of the fixed
closure approaches the error in the parameter estimates is very
large (specifically for all of the zero variance closures). Other meth-
ods provide more precise results. It is interesting to note that the
fourth order zero cumulants (zc4) closure is the computationally
most expensive one and the parameter search with fixed zc4 clo-
sure actually takes three minutes longer than the adaptive search,
despite the additional stochastic simulations and evaluations of all
closure methods needed here.

To further test our results, we  investigate how often the approx-
imation is changed during the run of our algorithm and which
closure methods are used most often. Table 1(b), column Ex 1,
shows how often the different closure methods are chosen as best.
It can be seen that some approximations are never chosen (for
instance all of the zero variance closures but also the second and
third order zero cumulants closures) whereas derivative matching
and low dispersion closures are chosen most often. Overall, high
order closures are preferred over low order closures. This is to be
expected, since these usually provide more precise results at the
cost of an increased computational effort. Also we highlight that the
option to switch the approximation is often used (in 15 out of 26
evaluations), and, compared to a pure simulation-based approach,
we need to employ stochastic simulation only 26 times (instead of
2000 times).

Example 2. As second case study, we  choose a model of two genes
that regulate each other’s production such that a negative feedback
loop is formed (see Fig. 4). The model is given by the following
reaction network:

Goff
1

�1−−−−→Gon
1 Goff

2 + P1
�4−−−−→Gon

2 + P1
� �
losure for parameter inference of biochemical reaction networks.
5

Gon
1 + P2

2−−−−→Goff
1 + P2 Gon

2
5−−−−→Goff

2

Gon
1

�3−−−−→Gon
1 + P1 Gon

2
�6−−−−→Gon

2 + P2

P1
�7−−−−→∅ P2

�7−−−−→∅

dx.doi.org/10.1016/j.biosystems.2016.07.005
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Fig. 2. Parameter search for Example 1. The panels show the values of the parameters in the search as a function of the iteration (blue). It can be seen that after approximately
1500  iterations the search is very close to the true values (red lines) for all parameters and retains these values. (For interpretation of the references to color in this figure
legend,  the reader is referred to the web version of this article.)
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on on
Please cite this article in press as: Schilling, C., et al., Adaptive moment c
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If a gene is active (G1 and G2 ), the respective protein is pro-
uced. Otherwise, the gene is in an inactive state (Goff

1 and Goff
2 ).

e assume that initially no protein molecules are present (i.e.
1(0) = P2(0) = 0) and that both genes are in the inactive state. Thus,

Fig. 4. Network model of the two genes negative feedback loop.
mputed with the best closure method (black) and the inferred parameters agrees
ed parameters (blue). (B) Also all the variances agree very well. The color coding is
reader is referred to the web version of this article.)

only the first reaction can take place (with rate �1), leading to acti-
vation of gene G1 and enabling production of protein P1 (with rate
�3). Gene G2 can only be activated if the protein P1 is present (rate
�4), and similarly, gene G1 can only be deactivated if protein P2
is present (rate �2). Additionally, both proteins degrade with rate
�7. It has previously been observed that for this example measuring
only one of the produced proteins does not provide sufficient infor-
mation to reliably estimate all the model parameters (Ruess and
Lygeros, 2015). To test whether this is confirmed by our method,
we applied our algorithm to data containing measurements of only
P1 or only P2. For both cases the search did not converge to the
true parameters and showed that many different parameters lead
to similar agreement of the model output with the data, i.e. that the
model parameters are practically unidentifiable if only one protein
losure for parameter inference of biochemical reaction networks.
5

is measured. It follows that both P1 and P2 have to be measured and
the extended likelihood in Eq. (7) has to be used in our algorithm.

We assume that the true parameters are given by �1 = 0.1,
�2 = 0.01, �3 = 10, �4 = 0.005, �5 = 0.1, �6 = 10 and �7 = 0.1. We

dx.doi.org/10.1016/j.biosystems.2016.07.005
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Table  1
(a) Relative distance between true and inferred parameters. The distances (in per-
cent) are obtained from our adaptive algorithm (adapt) and the different closure
methods on their own for the reaction network from Example 1. The smallest
distance is marked in bold. (b) Statistics of the used closure methods. Columns cor-
respond to the different reaction networks (Ex stands for example). The top block of
rows reports in percent how often each of the closure methods was  chosen as best
in  our adaptive search. The bottom block shows how often the approximation was
changed as our search progressed through the parameter space (switch), how often
stochastic simulation was performed, i.e. how often ε-neighborhoods were left and
all  the closure methods were tested (SSA), and the total number of iterations in the
search (imax).

Closure �1 �2 �3 �4

(a) Example 1
Adapt 4.09 1.20 0.08 0.10

dm2  0.13 0.23 0.52 1.02
zc2  10.37 6.20 6.28 10.73
zv2  379.28 85.45 56.99 92.45
dm3  2.25 0.03 0.90 2.72
zc3  0.94 0.47 7.29 13.04
zv3  365.21 91.94 62.47 96.75
ld3  28.80 5.07 0.60 1.55
dm4  2.79 0.55 0.07 0.34
zc4  17.52 1.77 6.64 9.76
zv4  364.76 86.07 55.81 88.76
ld4  44.69 10.67 10.97 23.71

Closure Ex 1 Ex 2 Ex 3 Ex 4 Ex 5

(b) Search statistics
dm2  13 0 39 0 6
zc2  0 0 0 46 0
zv2  0 0 0 0 0
dm3  13 11 0 0 3
zc3  0 0 17 0 3
zv3  0 0 17 0 0
ld3  18 11 0 0 35
dm4  18 45 5 54 11
zc4  13 0 0 0 21
zv4  0 0 11 0 0
ld4  25 33 11 0 21

Switch 15 8 17 12 33

i
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t
P
p

i

in m with a degree that grows in the maximal order of moments
SSA  26 53 23 48 47
imax 2k 10k 2k 4k 5k

nitialize the search with arbitrary parameter values and set the
aximal number of iterations imax to 10,000. For the reference data
e assume that 5000 cells are measured at the time points t1 = 10,

 . .,  t10 = 100. We  set the ε-parameter to 0.2 and the number of sim-
lations for evaluating the closure methods to 100. The search (see
ig. 5) needs roughly 3000–4000 iterations to converge to a region
lose to the true parameters. This period can be seen as the time that
he used Markov chain Monte Carlo algorithm needs to converge to
ts stationary distribution. The parameter values at the remaining
terations can then be seen as samples from a posterior distribution
with flat priors), i.e. a histogram over these values shows the shape
f the likelihood in parameter space. One-dimensional histograms
or each of the parameters are depicted in Fig. 6. It can be seen that
he histograms are very narrow, i.e. there is only little uncertainty in
he inferred parameter values, similar to Example 1. An ideal result
ould be if all the histograms were narrow and centered around the

rue parameter values (shown by the red line). However, errors that
re introduced by the moment closure approximations are propa-
ated to the inferred parameters, which leads to the result that not
ll the histograms in Fig. 6 are perfectly centered around the true
alues. Fig. 7 shows the sample moments of the measured data and
he final model output, i.e. the moments of the joint distribution of

and P computed with the best closure method and the inferred
Please cite this article in press as: Schilling, C., et al., Adaptive moment c
BioSystems (2016), http://dx.doi.org/10.1016/j.biosystems.2016.07.00

1 2
arameters �MLE( �̂).

As in Example 1, we also test how well the parameters can be
nferred when the closure method is not adapted during the search.
 PRESS
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We  find that only four of the considered moment closure methods
can be used on their own, as can be seen in Table 2(a). The clo-
sure methods ld4 (45%), dm4  (33%), dm3  (11%) and ld3 (6%) are
used exclusively in the adaptive search. It is interesting to note that,
while method ld4 is very precise around the true parameters, it can-
not be used in the other regions visited during the search. This is a
situation where the capability of our adaptive algorithm to change
the approximation during the search is important to obtain good
results. Our algorithm uses the dm3  and dm4 methods in the other
regions to guide the search toward the true parameters, and then
switches to the ld4 method only when it becomes precise enough.

Further examples. In addition to Examples 1 and 2 we apply our
algorithm to three further reaction networks and perform the same
comparisons. Specifically, we consider two models from the lit-
erature, namely the model of transient gene expression reported
in reference (Zechner et al., 2012) (termed here Example 3) and
the first case study in reference (Ruess et al., 2011) (termed
here Example 4). Additionally, we  design a model of a negatively
autoregulated gene where the produced protein P induces the
degradation of the transcription factor T that is responsible for acti-
vating the gene (see Rosenfeld et al., 2002; Becskei and Serrano,
2000 for examples of such a system) (termed here Example 5):

∅ �1−−−−→T T + Goff �2−−−−→Gon Gon �3−−−−→T + Goff

Gon �4−−−−→P + Gon T + P
�5−−−−→P P

�6−−−−→∅.

The results are overall similar to those obtained for Examples
1 and 2 and we only report the results on the identified parame-
ters in Tables 2(b) and 2(c), respectively; additionally, Table 1(b),
columns Ex 3–Ex 5, shows how often the different closure methods
are used by our adaptive search. It can be seen that in Example 4
the second order zero cumulants and the fourth order derivative
matching closure are chosen exclusively, whereas in Example 3,
different closures, including the zero variance closures, are used
and there is no noticeable preference for higher order closures. In
Example 5, mainly the third and fourth order low dispersion clo-
sures are used. Overall, we can observe that for different examples
different closure methods are employed and it is never the case
that a single closure method alone performs best during a whole
parameter identification run, which demonstrates the relevance of
our adaptive algorithm.

6. Evaluation of the computational cost

It is clear that the difficulty of the parameter inference prob-
lem increases with the dimensionality of the parameter space that
needs to be searched. In our implementation, this means that for
high dimensional parameter spaces, a larger number of iterations
imax of the search should be used. How many iterations are neces-
sary depends on the shape of the likelihood and the chosen starting
point of the search and cannot be answered in general. To compare
different examples, we therefore focus on the computational cost
normalized by the number of iterations throughout this section.

The second important question is how the computational cost
scales with the size of the reaction network, i.e. with the number
of chemical species m that are part of the reaction network. The
number of states of the whole CTMC model grows exponentially
in m even after truncation of a possibly infinite state space and the
chemical master equation typically becomes intractable already for
small values of m.  The main benefit of moment-based approaches
is that the number of moment equations scales only polynomially
losure for parameter inference of biochemical reaction networks.
5

that are used. The precise number of equations that is needed
has recently been investigated (Ruess, 2015), in particular also
for reaction networks like our Example 2 where some species

dx.doi.org/10.1016/j.biosystems.2016.07.005
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Fig. 5. Parameter search for Example 2. The panels show the values of the parameters in the search as a function of the iteration (blue). It can be seen that after approximately
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000  iterations the search is very close to the true values (red lines) for all paramete
gure  legend, the reader is referred to the web  version of this article.)

e.g. those representing gene states) can only be present in finite
umbers of molecules. Here, we focus on numerical results for our
ase studies and report the run times of our algorithm, as well as
he run times of parameter searches where the closure method
s not adaptively changed, in Table 3. As would be expected,
he adaptive search is usually the slowest because it employs
dditional stochastic simulations and evaluates the precision of all
oment closure methods whenever an ε-neighborhood is left, i.e.

everal times during the search.
Appropriate parallelization and/or use of a larger value for

 could mitigate this overhead, however. As a conclusion, our
pproach scales with the run time of the most precise closure
ethod, with additional cost per evaluation of the approximation,

nd we can control the evaluation frequency by the value of ε. The
un times per iteration in Table 3 also show the expected tendency
hat parameters of small reaction networks can be identified faster.
n particular, Example 1 and Example 4 consist only of two species
ach and require less computation time per iteration of the search
han Example 2 and Example 3. The computational cost observed
or Example 5, on the other hand, is similar to that of the smaller
ystems in Example 1 and Example 4, which shows that the compu-
ational cost of parameter inference does not necessarily increase
ith the size of the reaction network.

. Discussion
Please cite this article in press as: Schilling, C., et al., Adaptive moment c
BioSystems (2016), http://dx.doi.org/10.1016/j.biosystems.2016.07.00

Using mathematical models to help in the understanding of
omplex biological systems is the core idea of systems biology.
p to some years ago, the main bottleneck in the identification of
odels was the availability of sufficiently precise and abundant
d remains close to these values. (For interpretation of the references to color in this

data. Recently, measurement technologies have been improving
at an amazing pace and nowadays enable us to simultaneously
observe the dynamics of many different chemical species at sin-
gle cell resolution. As these developments continue, we will gain
access to data that is sufficiently informative to allow us to infer
mathematical models of complex reaction networks from the mea-
surements. However, for stochastic kinetic models that capture
the inherent randomness of chemical reactions, this leads to a
new bottleneck: the chemical master equation becomes intractable
for high-dimensional models and especially the reverse engineer-
ing task of identifying model parameters from the measured data
quickly becomes computationally infeasible. Parameter inference
methods based on moment closure offer a solution to this prob-
lem but come with their own drawbacks. The goal of this paper
was to address these drawbacks and to provide an automated
moment-based inference method that can be used without in-
depth knowledge of moment closure.

To this end, we interfaced previously proposed approaches with
a stochastic simulation algorithm by continuously checking the
quality of the approximations and adaptively adjusting the used
closure method to the best one available. Accordingly, our approach
is generally applicable whenever a sufficiently accurate approxi-
mation in the generated library of moment closure methods exists.
Importantly, since the approach can adapt the used closure dur-
ing the exploration of the parameter space, it is not required that
a unique closure method provides good approximations for the
losure for parameter inference of biochemical reaction networks.
5

entire parameter space.
Naturally, these benefits come with an increased computa-

tional cost compared to most standard moment-based inference
approaches. This increase can primarily be attributed to the

dx.doi.org/10.1016/j.biosystems.2016.07.005
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ig. 6. Histograms for Example 2. The histograms were taken over all parameter va
arameters are given as red lines. (For interpretation of the references to color in th

dditional stochastic simulation and the evaluation of all the
losure methods that is performed whenever the parameter
earch leaves an ε-neighborhood around the point in parameter
pace where the last simulation was performed. Accordingly, the
arameter ε provides a trade-off between computational cost
Please cite this article in press as: Schilling, C., et al., Adaptive moment c
BioSystems (2016), http://dx.doi.org/10.1016/j.biosystems.2016.07.00

nd guarantees that a good approximation is used. For ε→ ∞ our
pproach becomes a standard moment-based inference method,
hereas ε → 0 essentially leads to a method akin to those based

ntirely on stochastic simulation. We  believe that this flexibility

ig. 7. Model output and data for the inferred parameters of Example 2. The moments of
nferred  parameters (black) are compared to the sample moments of the measured data
eader  is referred to the web  version of this article.)
isited by the search in the iterations 4000 to 10,000 (black). The true values of the
re legend, the reader is referred to the web version of this article.)

will prove to be valuable and allow us to investigate a large variety
of different reaction networks with one unified inference method.

As future work, we plan to extend the generality of our algo-
rithm further. More specifically, we plan to include and test
more moment closure methods (e.g. the linear noise approxi-
losure for parameter inference of biochemical reaction networks.
5

mation) and possibly also to include approximation methods for
the full solution of the CME  as alternatives to moment closure
(Munsky and Khammash, 2006; Wolf et al., 2010; Ammar  et al.,
2012; Chinesta et al., 2015). Furthermore, one could also envision

 the joint distribution of P1 and P2 computed with the best closure method and the
 (red dots). (For interpretation of the references to colour in this figure legend, the

dx.doi.org/10.1016/j.biosystems.2016.07.005
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Table 2
Relative distance between true and inferred parameters. The tables show the results as in Table 1(a) for the respective Examples 2–5. Dashes (–) indicate that the particular
parameter search did not succeed due to problems with the closure method.

Closure �1 �2 �3 �4 �5 �6 �7

(a) Example 2
Adapt 5.54 15.92 0.24 1.43 8.02 2.64 6.54
dm2  1.09 35.65 2.44 33.62 40.09 5.61 18.58
zc2  – – – – – – –
zv2  – – – – – – –
dm3  6.11 17.01 4.92 10.42 2.40 0.45 1.43
zc3  – – – – – – –
zv3  – – – – – – –
ld3  9.80 32.23 3.41 14.73 19.12 8.37 15.11
dm4  4.56 9.33 3.26 5.91 4.19 0.05 2.52
zc4  – – – – – – –
zv4  – – – – – – –
ld4  – – – – – – –

Example 3 Example 4

Closure �1 �2 �3 �4 �1 �2 �3 �4

(b) Examples 3 &4
Adapt 2.97 4.07 2.23 0.04 17.85 12.37 65.88 123.59
dm2  14.69 18.86 2.31 0.31 32.99 41.68 93.43 235.62
zc2  16.77 10.27 1.74 0.57 10.37 12.12 85.29 213.26
zv2  25.36 18.36 7.77 5.84 – – – –
dm3  – – – – 19.82 18.00 78.79 173.42
zc3  19.94 21.01 1.10 1.33 – – – –
zv3  4.08 15.90 2.23 4.94 – – – –
ld3  24.05 28.20 1.20 1.11 10.28 13.06 84.31 214.49
dm4  – – – – 18.37 11.72 64.09 112.11
zc4  – – – – – – – –
zv4  33.65 31.75 3.90 3.11 – – – –
ld4  25.79 30.10 0.55 1.29 – – – –

Closure �1 �2 �3 �4 �5 �6

(c) Example 5
Adapt 3.98 7.83 43.38 7.24 13.63 7.76
dm2  36.18 69.35 7.59 1.82 9.00 1.96
zc2  475.17 84.71 43.38 6.09 93.97 3.53
zv2  – – – – – –
dm3  20.29 30.98 16.41 5.49 30.63 5.45
zc3  56.19 200.10 292.49 11.83 231.22 14.71
zv3  – – – – – –
ld3  56.98 171.69 14.71 0.34 173.90 0.45
dm4  – – – – – –

– 

– 

4.23 
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o
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sion and computational cost of the different approximations such

T
R
e

zc4  – – 

zv4  – – 

ld4  9.48 15.82 

ntegrating a minimal requirement for the approximation quality
nd force the algorithm to search through the parameter space
sing only stochastic simulation as long as none of the considered
Please cite this article in press as: Schilling, C., et al., Adaptive moment c
BioSystems (2016), http://dx.doi.org/10.1016/j.biosystems.2016.07.00

pproximations fulfills the requirements. We also plan to apply
ur algorithm to larger and more challenging reaction networks,
nd to make a complete toolbox for moment-based parameter

able 3
un times. Columns correspond to the different reaction networks (Ex stands for exampl
xperiments on a 2.26 GHz dual-core Linux notebook with 4 GB RAM.

Closure Ex 1 Ex 2 Ex 3

Adapt 452 0.22 4193 0.41 151
dm2  184 0.09 1413 0.14 537
zc2  200 0.10 – – 379
zv2  126 0.06 – – 354
dm3  217 0.10 1971 0.19 – 

zc3  267 0.13 – – 557
zv3  141 0.07 – – 948
ld3  228 0.11 2,049 0.20 901
dm4  259 0.12 2,990 0.29 – 

zc4  636 0.31 – – – 

zv4  163 0.08 – – 132
ld4  232 0.11 – – 149
– – –
– – –
3.87 50.61 3.72

inference publicly available. In addition to this, in order to speed
up our algorithm, we plan to introduce a trade-off between preci-
losure for parameter inference of biochemical reaction networks.
5

that the more expensive high order closure methods are only
chosen when the low order closures do not provide acceptable
precision.

e). Run time is given in seconds, both total (left) and normalized (right). We ran all

 Ex 4 Ex 5

1 0.75 835 0.20 1080 0.21
 0.26 263 0.06 454 0.09
 0.18 351 0.08 744 0.14
 0.17 – – – –

– 327 0.08 516 0.10
 0.27 – – 1473 0.29
 0.47 – – – –

 0.45 314 0.07 503 0.10
– 388 0.09 – –
– – – – –

6 0.66 – – – –
2 0.74 – – 610 0.12

dx.doi.org/10.1016/j.biosystems.2016.07.005
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