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Abstract. Despite researchers’ efforts in the last couple of decades,
reachability analysis is still a challenging problem even for linear hybrid
systems. Among the existing approaches, the most practical ones are
mainly based on bounded-time reachable set over-approximations. For
the purpose of unbounded-time analysis, one important strategy is to
abstract the original system and find an invariant for the abstraction. In
this paper, we propose an approach to constructing a new kind of abstrac-
tion called conic abstraction for affine hybrid systems, and to computing
reachable sets based on this abstraction. The essential feature of a conic
abstraction is that it partitions the state space of a system into a set
of convex polyhedral cones which is derived from a uniform conic par-
tition of the derivative space. Such a set of polyhedral cones is able to
cut all trajectories of the system into almost straight segments so that
every segment of a reach pipe in a polyhedral cone tends to be straight
as well, and hence can be over-approximated tightly by polyhedra using
similar techniques as HyTech or PHAVer. In particular, for diagonaliz-
able affine systems, our approach can guarantee to find an invariant for
unbounded reachable sets, which is beyond the capability of bounded-
time reachability analysis tools. We implemented the approach in a tool
and experiments on benchmarks show that our approach is more power-
ful than SpaceEx and PHAVer in dealing with diagonalizable systems.

Keywords: Affine system - Hybrid system - Reachability analysis -
Conic abstraction - Discrete abstraction

1 Introduction

Hybrid systems [1,2] are systems that admit interacting discrete and continuous
dynamics. Reachability analysis of hybrid systems has been a major research
issue over the past couple of decades [3—8]. An important part of the effort has
been devoted to hybrid systems where the continuous dynamics is described by
linear or affine differential equations or inclusions. For the purpose of efficient
computation, a number of representations of convex set have been proposed,
including polyhedrons [9,10], ellipsoids [11,12], hyperrectangles [13], zonotopes
[14,15], and support functions [16]. A common feature of these approaches is
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that all of them apply only to reachability analysis with bounded continuous
time although sometimes a fixed point could be found.

For the purpose of unbounded-time analysis, a very useful strategy is to
use lightweight runtime technique for continuous online verification [17,18], and
another important strategy is to abstract the original system and find an invari-
ant for the abstraction [19]. However, obtaining a high-quality abstraction auto-
matically for the original system is challenging by itself and this is why PHAVer
chooses to leave this important work to users, who have some domain expertise
available for this purpose [20]. Roughly speaking, the ultimate goal of abstraction
is to use a partition of the state space which is as coarse as possible, to derive an
over-approximation of the original system which is as accurate as possible and
allows a computation of the reachable state set which is as efficient as possible.
Depending on the set representation that is used, the schemes that have been
proposed for state space partition vary significantly [5,21-28]. When polyhedra
are used for the set representation of states, a guiding principle for state space
partitioning is that the partition should result in a set of regions that are as
“straight” as possible. By “straight region”, we mean that the maximal angle
between the derivative vectors in that region (which we define as the twisting of
the region) is small, so that every trajectory tends to be straight in the region.
The benefit of straight regions is that they can be over-approximated accurately
by polyhedra. However, for a given system, obtaining the least number of straight
regions under a given threshold of twisting is by no means trivial.

With this principle in mind, we propose a new abstraction called conic
abstraction for affine hybrid systems and we compute reachable state sets based
on the abstraction. Given an n-D linear system defined by & = Az, assume
that A is an invertible matrix (note that any affine system & = Az + b can be
transformed into a linear system under this assumption). The basic idea behind
conic abstraction is as follows. First, the derivative space of the system is parti-
tioned uniformly into a set D of convex polyhedral cones. Then, D is mapped
back from the derivative space to the state space to obtain a conic partition
C of state space, i.e., YC; € C : 3D; € D : C; = {A 'y | y € D;}. Finally,
every state region C; is treated as a discrete location (“mode”) and the discrete
transitions between these modes are decided on-the-fly according to whether
there exists a trajectory between them. By doing so, we can easily obtain the
differential inclusion D; for each polyhedral cone C;. Therefore, for any subset
I; of C;, the reachable set of I; in C; can be overapproximated by (I; ® D;) N C;,
where @ denotes the Minkowski sum. More importantly, since the twisting of C;
is determined by the maximal angle of D,, the partition can be refined easily
to any desired precision, by shrinking the maximal angle of the conic partition
of the derivative space. Note that an important feature of C; is that it is an
unbounded set, however, with a bounded twisting, which means that each C;
captures infinitely long trajectories only if they are straight enough. Diagonaliz-
able affine systems, for which the matrix A is diagonalizable, form such a class
of systems, because for diagonalizable systems all trajectories eventually evolve
into approximately straight lines.
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Using properties of diagonalizable affine systems, we develop an algorithm
that constructs a conic abstraction as a directed acyclic graph (DAG) for which
an invariant (i.e., an over-approximation of the reachable state set) exists and
the computation of the invariant is guaranteed to terminate. The algorithm is
implemented in a tool and experiments on randomly generated examples as
well as published benchmarks show that our approach is more powerful than
PHAVer in finding unbounded invariants. Note that computing an unbounded
invariant for diagonalizable affine systems lies beyond the capability of tools for
time-bounded reachability analysis, such as SpaceFEz [29].

The main contributions of this paper are as follows. First, we propose conic
abstractions and a method for constructing them for affine hybrid systems. The
core idea lies in deriving a state space partition from a uniform partition of the
derivative space. Second, we develop an algorithm for building conic abstractions
as DAGs for diagonalizable affine systems and for computing invariants on these
abstractions. Finally, we implement and evaluate our approach in a tool.

The paper is organized as follows. Section 2 is devoted to preliminary defin-
itions. In Sect. 3, we introduce conic abstractions for affine systems. In Sect. 4,
we show how to construct conic abstractions as DAGs for diagonalizable sys-
tems. Section 5 describes how we compute invariants for continuous systems and
affine hybrid systems. In Sect. 6, we present our experimental results. Finally,
we conclude with Sect. 7.

2 Preliminaries

In this section, we recall some concepts used throughout the paper. We first
clarify some notation conventions. We use bold uppercase letters such as A
to denote matrices and bold lowercase letters such as b to denote vectors and
diag(A1,- -+, An) to denote a diagonal matrix with Ap,---, A, as its diagonal
elements. We call a dynamical system defined as & = Ax + b an affine system
and we use a superscript 1" for the transpose of a matrix.

Definition 1 (Affine System). An n-dimensional affine system consists of a
matriz A € R™*"™ and a vector b € R™, which define the vector flow € = Ax+b,
and an initial region X9 C IR" defined by a polyhedron.

Whenever the initial set is immaterial, we refer to an affine system just as to
= Ax + b. We next introduce the concept of Lie derivative.

Definition 2 (Lie derivative). For a given polynomial p € Klz] and a con-
tinuous system & = f, the Lie derivative of p € K[x| along f is defined as

cep © (Vp, 7).

For an affine system © = Ax + b, we can simply write the Lie derivative as
Lala,x) = (aA,zT) + (a,b"). We call a polyhedral cone C' an intersection of
linear inequalities of the form (a,x) < 0, and we denote its boundary as 9C.
For X, Y CIR", X @Y denotes their Minkowski sum {x + y: x € X and y €
Y}, and for A € R™™"™ and X C IR", AX denotes the linear transformation
{Az: ¢ € X}.
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3 Conic Abstractions of Affine Systems

Discrete abstraction is a basic strategy for verifying continuous and hybrid sys-
tems. There are many abstraction approaches proposed for this purpose. Rec-
tangular abstraction [5,19,30] and nonlinear abstraction [22-24,26] are widely
used. However, even for linear systems, the existing abstraction approaches are
still inefficient. In this section, focusing on linear systems, we propose a new
abstraction approach called conic abstraction. However, since every affine sys-
tem can be transformed into an equivalent linear system @& = Ax, as we discuss
in Sec. 4, our discussion applies to affine systems too.

The idea is that we partition the state space of a linear system into a set of
convex polyhedral cones. We call this set a conic partition.

Definition 3 (Conic Partition). A conic partition is a set of polyhedral cones
A such that Uc,eaC; = IR™ and every two cones C1,Co € A have disjoint
interiors, i.e., (C1\0C1) N (C2\0C2) = 0.

We call an element of the partition C' € A a region. Then we construct a graph
whose vertices correspond to partition regions and edges indicate possible flow
between them. We call such a graph a conic abstraction.

Definition 4 (Conic Abstraction). The conic abstraction of the linear sys-
tem & = Ax derived from the conic partition A consists of the finite directed
graph (L, E) as follows. Every wvertex lc € L corresponds to one and only
one cone C € A. There exists an edge (lcy,lc,) € E if and only if there
ezists a plane Fy = {x | (a,zT) = 0} such that (1) 0C; N dCy C Fy, (2)
C1 C {z | {a,2T) < 0}, (3) the Lie derivative of {a,z') is non-negative at
some common point, i.e., Lala,zT) >0 for some & € 0C1 N ICs.

We elaborate on how to construct a conic abstraction for diagonalizable sys-
tems in Sect.4. A conic abstraction can be seen as a Linear Hybrid Automaton
(LHA, [1]), whose locations l¢ are such that its invariant is given by C, its flow
is given by a differential inclusion defined as & € AC, and whose switch guards
consist of the common facet of the respective adjacent cones.

Ezample 1 (running example). Consider the linear system described by & =
—2x — 2y,9y = —bx + y. A conic partition of the state space, the corresponding
differential inclusion and the conic abstraction of the system is shown in Fig. 1a,
b and c, respectively. As you can see, both the invariant and the differential
inclusion of each location are polyhedral cones. a

Similarly as for the symbolic reachability analysis of LHA [2], the set of states
that are reachable from an initial set X C IR"™ through the continuous flow at
location [¢ € L corresponding to C € A is given by

(X ® AC)NC. (1)

A conic abstraction represents an overapproximation of the system, whose
tightness depends on the maximum angle between any two points in the cone
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Fig. 1. Example 1. (a) Conic partition of state space. (b) Conic differential inclusion.
(c) Conic abstraction of the system.

AC in derivative space. Roughly speaking, the more acute the cone AC in
derivative space, the more accurate the overapproximation. Figure 2a shows a
comparison between conic partitions with different accuracies (depicted in two
different shades) for the same initial region. We encapsulate the accuracy given
by a partition with the notion of twisting.

Definition 5 (Twisting of a state region). Let & = Ax be a linear system
and P C IR" be a (not necessarily conic) region of the state space. Then P is
said to have a twisting of 0 (or to be 0 twisted) if it satisfies that

supareeos () 0. @)

@1,w2E P [ [l |

Intuitively, a cone with smaller twisting allows only trajectory segments that
are almost straight, inducing a more accurate overapproximation. In the con-
text of conic abstraction, properly inducing smaller and smaller twistings induce
refinements of the abstraction, providing a better overapproximation.
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Fig. 2. (a) Overapproximation inside different cones. The smaller the cone, the more
precise the overapproximation. (b) A cone capable of offering accurate overapproxima-
tion for unbounded reach pipe.

Definition 6 (Conic abstraction refinement). Given two conic abstrac-
tions (L1,E1) and (Lo, E3) for a linear system & = Ax, (L2, FE3) refines
(L1, E1) if |La| > |L1| and for all Iy € Ly with cone Cy there does always
exist 13,...,15" € Lo with cones C3,...,C% such that C; = C3U---UCH.

It is subject of Sect.4 how to generate abstraction refinements by tuning the
value of twisting.

The property we desire is that the twisting of every state partition is bounded
by a small angle . A common strategy to achieve this goal is to split the state
space into small rectangles iteratively until the twisting of each rectangle falls
below 6 [19,30,31]. However, such strategy is inefficient, as the twisting may not
change uniformly in a rectangular partition. On the contrary, a conic partition
naturally enjoys bounded twisting using unbounded regions. This allows a conic
partition to accurately overapproximate both bounded and unbounded reach
pipes, if in the latter case the trajectories are straight enough. Figure 2b shows
such an example, where the tiny cone overapproximates all trajectories entering
it, as they tend to be parallel to its left boundary.

3.1 Conic Abstractions Derived from Derivative Space Partitions

In existing work on discrete abstraction of continuous systems, to obtain a high-
quality state space partition, the focus is mostly placed on state space. However,
what really matters here is the derivative space. Therefore, our state space par-
tition should be derived from a derivative space partition. Given a continuous
system & = f(x), every convex cone D in the derivative space with a maximal
angle 6 corresponds to a set C' of states which has a twisting of . Moreover, C'
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can be obtained through simple substitution. However, for nonlinear systems, C'
is nonlinear and is hard to handle, so we leave it for future work.

We assume that the systems under consideration are linear. To derive a
conic abstraction for an n-dimensional linear system, we first partition the whole
derivative space into a set {2 of convex polyhedral cones which satisfies that

1. UDiEQ .DZ - an;
3. VD; € 2 : <D; < 0, where <D; denotes the maximal angle of D; (i.e. the
maximal angle between the vectors in D;) and 6 is a given bound.

By mapping {2 back to the state space, we can obtain another set A of state
regions. The property of A is formalized in the following theorem.

Theorem 1. Given a linear system & = Ax let {2 be a set of convex polyhedral
cones defined as above and A = {A™'D | D € 2}. Then,

1. every C; € A is a convex polyhedral cone and the twisting of C; is 6-bounded;
2. UC’,;EA Cl = IRn,'
3. VCi,Cj cA: (01\86’1) ﬂ(C’Z\QC’j) = @,’

Remark 1. According to Theorem 1, we know that, given any linear system H
with an invertible matrix A and a #-bounded conic partition {2 of the derivative
space, a conic partition A for the state space with 6-bounded twisting can be
obtained by a linear transformation. Note that the twisting of C; is 6-bounded
does not mean that C; is #-bounded. Conversely, the maximal angle of each
cone C; varies significantly depending on how straight the trajectories are in
that cone. Roughly speaking, the straighter the trajectories are, the larger the
maximal angle of C; is, provided that the twisting is the same. O

Now, let us get back to the issue of generating a conic partition of the deriv-
ative space. Our approach borrows the idea of slicing watermelons. Concretely,
given an n-dimensional derivative space, we first choose a group of seed planes
passing through the origin and then generate a cluster of planes by rotating
each seed plane counterclockwise around an independent axis by a fixed angle
01, step by step until no further 6; rotation is possible. Finally, the whole vector
space can be sliced into a set of convex polyhedral cones by the generated planes
and each of them is #3-bounded for some #;. By mapping these cones into the
state space, we can achieve a conic partition of #>-bounded twisting for the state
space. The following example shows how a conic state space partition derived
from a uniform derivative space partition looks like.

Ezample 2 (running example). Consider the following linear system H described
by ¢ = —2x — 2y,y = —bx + y. As shown in Fig. 3a, the derivative space is first
uniformly partitioned into 18 cones. Then, these cones are mapped into the state
space. As can be seen in Fig.3b, in every cone, the straighter the trajectories
are, the larger the maximal angle of the cone is. a
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Fig. 3. Example 2 (a) Uniformly conic partition of the the derivative space. (b) Conic
partition of state space derived from the derivative space partition.

The reachable set computation of a conic abstraction is a basic operation of
linear hybrid automata. As usual, due to the undecidable nature of the issue, the
reachable set computation of a conic abstraction cannot guarantee to terminate
for a general linear system. However, for the conic abstraction of a specific class
of systems, the reachable set computation can be guaranteed to terminate, which
is shown in the next section.

4 Diagonalizable Systems

In this section, we focus on a class of affine systems for which the matrix used
to describe the system dynamics is diagonalizable in IR, called diagonalizable
systems. The reason why diagonalizable systems are interesting is that, given
a conic abstraction, the reachable set computation is guaranteed to terminate.
Formally, a diagonalizable system is defined as follows.

Definition 7 (Diagonalizable system). An affine system & = Ax+b is diag-
onalizable if there exist a real matriz Q such that Q= AQ = diag(\1,- -+, \n),
where \; e R, \; #0,i=1,--- . n.

In the following, we introduce how to derive a conic abstraction for a diago-
nalizable system and how to overapproximate their reachable sets by the conic
abstraction. We also extend the theory to hybrid affine systems.

4.1 Properties of Diagonalizable Systems

The most important feature of diagonalizable system is that all of their eigenval-
ues are real numbers. Given a diagonalizable affine system © = Ax+b with initial
region X, by doing a translation on the coordinate system with y = « + A~ 'b,
we can always transform the system into a linear system ¢y = Ay with initial
region Yy = Xo@{A'b}. Let A1, ..., \, be the eigenvalues of A and uy, ..., u;
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be the corresponding eigenvectors respectively, then the general solution of the
linear system can be written as (refer to [32])

(E(t) = 016)‘175’11,1 4+ 4+ CneA"t’U,n (3)

where c1,...,c, depends on the initial value &gy of the system of differential
equations and can be obtained by solving (0) = xg. Let U = (uq,...,u,) and
c=(c1,...,¢p), Cone(c,U) = {z € R" | x = >, tic;u;, t; > 0} denote the
convex polyhedral cone generated by the vectors ciuq, ..., c,u,. Then, we have
the following theorem.

Theorem 2. Given a diagonalizable system © = Ax + b, let U be defined as
above and = = {—1,1}". Then, for every & € =, Cone(&,U) is an invariant
and the twisting of Cone(€,U) is bounded by radian .

Remark 2. According to Theorem 2, the state space of a diagonalizable system
can always be partitioned into a set of invariant cones and the twisting of every
invariant cone is bounded by radian w. Therefore, given a diagonalizable sys-
tem, to overapproximate the reachable set, we do not have to construct a conic
abstraction for the whole state space. Instead, we only need to figure out which
invariant cones the initial set spans and then construct a conic abstraction for
each of them respectively. As mentioned previously, we would start from par-
titioning the derivative space. Based on the property of diagonalizable system,
we develop a partitioning scheme which can construct a conic abstraction as a
directed acyclic graph.

4.2 Diagonalization and Conic Partition

The first step of constructing a conic partition consists of diagonalizing the orig-
inal system. Given a diagonalizable system ¢ = Ay with initial region Yp, a
diagonalization of it is a linear system Z = A,z with initial region Z; where
Ay, = Q 'AQ is a diagonal matrix and Zy = Q" 'Y; for some Q. In theory,
the diagonalized system is equivalent to the original system in terms of safety
verification. However, by doing diagonalization, we manage to transform every
invariant cone and its derivative cone into an independent orthant respectively.
Since an orthant as a cone has some good properties such as having a fixed maxi-
mal angle of § and all the generating vectors of the invariant cones are orthogonal
to each other, we propose a special conic partition scheme, called radial partition,
which can result in a directed acyclic graph for the conic abstraction.

Given a diagonalized n-dimensional system 2 = Axz and an orthant
O = {z € R" | Bz < 0} in derivative space, where B = diag(bi1,...,bnn)
with b;; = 1 or —1. Let B;, B; be the i’th and j’th row vectors of B respec-
tively, where ¢ # j. The basic idea of radial partition is as follows. For every
pair of (B;, Bj), we generate a sequence of vectors Si; : vij1,- - -, Vij(k,,+1) DY
rotating the vector v;;; = Bj; from B; to B; step by step with an rotating
amplitude 5 17;7 Then, S;; is used as the sequence of normal vectors of par-
titioning planes. Thus, each pair of adjacent vectors v;;x, v;jx+1 forms a slice
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Algorithm 1. Reach pipe overapproximation of affine systems

input : System & = Ax + b and initial set Xp;
local : Heap of partition regions H; /*stores unique elements only*/
output: Map from partition region to polyhedron R; /*by default maps to 0*/

1 Ax — Q 'AQ; /*diagonalize*/

2 Zo — Q7 '(Xo ® {A'b}); /*transform into linear system and diagonalize*/

3 foreach C partition region in state space such that Zo N C # 0 do

4 insert into R(C') the template polyhedron of [(Zo N C) ® ArC]| N C;

5 push C' into H;

6 end

7 while H is not empty do

8 C' «— pop the top of H;

9 foreach D successor partition region of C such that R(C)N D # () do
10 join R(D) with the template polyhedron of [(R(C) N D) & AxD]N D;
11 push D into Hj;

12 end
13 end

{z € R" | (vijk,2T) < 0,{—viji+1,27) < 0} of the orthant O and O will
be partitioned into Kj;; slices by all the planes formed by S;;. Hence, we can
get =Y ordered sequences of planes at most totally. These planes intersect-
ing each other yield a conic partition D for the orthant O. However, we do not
really need so many sequences of partitioning planes. Actually, n—1 sequences of
planes suffices to construct a partition with an arbitrarily small maximal angle.

For the conic abstraction derived from radial partition, we have the following

theorem.

Theorem 3. FEvery conic abstraction derived from a radial partition of the
derivative space is a directed acyclic graph.

Remark 3. By Theorem 3, the reachable set exploration of the conic abstraction
derived from a radial partition is guaranteed to terminate. Moreover, as indicated
in the proof, the direction of the discrete transition between locations can be
easily determined by the sign of the Lie derivatives of the partitioning planes at
the beginning [33]. O

5 Time-Unbounded Reachability Analysis

In this section, we present how to compute the overapproximation of reach pipe
of a given affine system based on the conic abstraction.

We first diagonalize the system (as in Sect.4.2) and we identify the regions
that hit the initial region. Then we iteratively explore the adjacent regions, while
computing and storing the reach pipe. In particular, we build the control graph of
the conic abstraction incrementally and only for those locations that are indeed
reachable. We outline our procedure in Algorithm 1.



126 S. Bogomolov et al.

— The first two lines aim to translate the equilibrium point to the origin and
further diagonalize the system. The initial set Xy undergoes a similar trans-
formation.

— In line 3-6, we split the initial set into multiple regions. For each split, we
compute the overapproximation of the reach pipe inside the respective region,
as defined in Eq. 1. We store the result in R and we push the region to H for
further exploration.

— Inline 7-13, we compute the overapproximation of following reach pipes inside
the adjacent regions. The result is joined to what previously computed in
the same region. The join consists of taking a convex hull between template
polyhedra. Each such successor region is pushed to H.

We optimize the exploration order so to explore the successors of a specific
region at most once, namely we want the heap H to never pop a region twice
at line 8. To this aim, we instruct H to maintain a topological order between
regions given by the graph of the conic abstraction (see Definition 4). Such order
always exists, as a radial partition always induces an acyclic one (see Theorem 3).
Similarly, on the enumeration of line 9, each region D must satisfy the same order
w.r.t. C. Concretely, the order between regions is the closure of the order given
by the Lie derivative of their common facets (as in Definition4).

We produce a map from partition regions to template polyhedra, where each
template polyhedron overapproximates the reach pipe at the respective region.
Precisely, the template polyhedron of a convex set X C IR"™ w.r.t. the finite set
of directions D C IR"™, which we call the template, is the tightest polyhedron
enclosing X whose facets are normal to all and only the directions in D. We
efficiently compute the template polyhedra at lines 4 and 10 using linear pro-
gramming [34] and the convex hull at line 10 by simply taking for each direction
the facet that is the loosest between the two. The choice of template is critical
for the quality of the abstraction and the efficiency of the procedure. In each
region we use the octagonal template, augmented with the normals of the facets
of both the derivative and the state space cones.

In the following, we exemplify the result of the procedure on our running
example under different granularities of the partition.

Ezample 8 (running example). Consider the system in Example 1, let the initial
set be Xo = {(z,y) € R? | =30 < 2 < —28, 45 < y < —43} and the invariant
be IR%. We diagonalize and transform the system dynamics into & = —4x,§ = 3y
with initial state Zo = {(z,y) € R* | —z + 2y <30,z — 2y < —28,—x—y <
45, x +y < —43}. By partitioning the orthant into 5, 20 and 60 cones respec-
tively, we got 3 overapproximations of different accuracies for the unbounded
reachable set, which is shown in Fig.4. As can be seen, the precision of the
overapproximation increases rapidly with the number of cones. a
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Fig. 4. Unbounded invariants obtained for Example 3 under different numbers of slices
of partition.

5.1 Mode Switching

The theory presented in the previous sections can be easily extended to deal with
hybrid systems. Given a hybrid system, the conic abstraction of each discrete
location can be done as presented. However, due to the transformation of the
system dynamics in each location, the same transformation also needs to be
applied to the guards and reset operations of the discrete transitions between
locations.

Concretely, let y = A;y + b; and ¥ = Ay + b; be the dynamics of two
discrete locations ;, [; of a hybrid system, G;; = {y € R" | J;;y < h;;} be the
guard of the transition (I;,1;) and T;; : y' — M,y + e;; be the reset operation.
Suppose the diagonalization of A;, A; are Ax, = Q; 'A;Q;, Ax, = Q; 'A,Q;,
respectively. Let @ be the variable name after transformation, then we have
lLi:y=Q,x+ A;lbi and [j 1y = Q,x + A;lbj. Thus, the guard and the reset
operation are transformed into the following.

Gij={z e R" [ J;;Q;x < h;j — JijA; b} (4)
T;;» R A Q]'_1<MijQiiB + Miin_lbi + €5 — Aj_lbj) (5)

Location invariants I; are transformed as well using the formula I} = {z €
R" |z =Q '(y+ A 'b),y € I;}. By applying the above transformations to
the whole hybrid system and then performing the conic abstraction, we obtain
an LHA, whose reachability analysis can be done as usual. However, unlike for
pure continuous systems, termination is not guaranteed.

6 Experiments

We have implemented the procedure presented above in C++ using the GLPK
library for linear programming [35], and we have performed two experiments. In
the first, we have performed a scalability test using purely continuous systems
given by random matrices of increasing size and for increasing precision of the
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precision

(b)

Fig. 5. Scalability of our method in computing the abstraction of purely continuous
systems. The abscissa of (a) refer to the number of variables and each curve refers to
a precision (maximum angle), while the abscissa of (b) refers to precisions and each
curve refers to a system size (# variables). Both ordinates show the average runtime
for 50 randomly generated systems for each system size and precision.

analysis. In the second, we have considered the room heating benchmark and com-
pared against SpaceFz under scenarios supp and stc and PHAVer [16,20, 36].

We generated random diagonal matrices with non-zero distinct integer values
between —10 and 10 on the diagonal. Then we measured the runtime of our
procedure for the maximum angles of i for increasing k (two by two) and the
initial state being a unit box centered in (50, ...,50). Figure 5a shows that the
runtime increases exponentially with the number of variables, while the more
the precision increases the less (for fixed system size) the difference in runtime is
affected. The latter is also confirmed by Fig. 5b, which shows that the runtime
increases polynomially with the increase in precision and that the number of
variables affects the degree of the polynomial as, in fact, the number of partitions
is worst case k™.

The room heating benchmark describes a protocol for heating a number of
rooms with a limited number of shared heaters [37]. We consider houses with 2
to 6 ordered rooms, each room is only adjacent to the previous and the following
room, and all but one room have a heater. The temperature of room 17 is governed
by a linear ODE of the form

i‘i :ch—|—b¢(u—zi) +Zaij(xj —CCZ‘) (6)
J#i

where ¢ is the heater efficiency, h indicates whether the heater is present, b; is
the room dispersion, u is external temperature, and a;; is the heat exchange
between rooms (a;; = 0 for non-adjacent rooms). The switching logic moves a
heater from a room to an adjacent room if the temperature difference exceeds a
threshold and the latter is colder. In addition, we augmented every mode with a
dummy self switch, so to force SpaceEx to perform time-unbounded reachability.
We have verified the room heating benchmark using SpaceFEx with both sce-
narios supp and stc and in both cases it either crashes or timeouts. Conversely,
using PHAVer the procedure terminated, but for small models only. Similarly to
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Table 1. Runtimes for the abstraction of the room heating benchmark with 2 to 6
rooms. SpaceEzr has been run with scenarios supp and stc, template oct, and time
horizon of 1. PHAVer has been run on explicit conic partitions for the given precisions
whose generation time is excluded here. We used a 2.6 GHz CPU with 4 Gb RAM. The
key err indicates error, oot out of time (24 h), and - experiment not executed, i.e., the
explicit partitioning run out of 24 h time.

Time part. | Conic part.

SpaceEx PHAVer Our method

supp | stc |w/4 |7/20|7/40 |7/80 |w/4 |7w/20|7/40 |7/80
heat-2|err |oot |0.17[2.20 |9.86 50.86|0.24 |0.25 |0.31 |0.41

heat-3 |err |oot |oot (oot |oot |— 147 2.41 |5.18 |12.32
heat-4 |err | oot |oot |— - — 14155278 | 190 1217
heat-5|err |oot |oot |— - - oot oot | 27467 | 56671
heat-6 |err |oot |- - - - oot oot | oot oot

20

20

Fig. 6. Conic abstractions of the heating benchmark for 2 rooms (a, b, and ¢) and
2-dimensional projection for 3 rooms (d, e, and f) for resp. precisions 7/20 (a and d),
7/80 (b and e), and 7/400 (c and f).
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our method, PHAVer abstracts affine systems into LHA, but it requires the user
to provide an explicit partition of the state space (rather than the derivative
space). We have generated equivalent conic abstractions in the form of explicit
LHA and verified them with PHAVer. Note that if such LHA is not provided,
PHAVer computes trivial abstractions by using the whole mode invariants as
partitions. PHAVer uses quantifier elimination for forward reachability, while
we compute template polyhedra.

The time results are shown in Table 1. First, PHAver always times out for
systems with more than 2 variables and even for 2-dimensional it scales poorly
in precision compared to our method. Second, beyond three dimensional systems
our method is even faster than generating the explicit LHA. The scalability in
dimensionality indicated the advantage of using template polyhedra rather quan-
tifier elimination while the scalability in precision demonstrates the advantage
of using our incremental construction of the conic partition. Figure 6 depicts the
abstractions for the 2 and 3 rooms systems and for precisions 7/20, 7/80, and
additionally 7/400, computed using our method. Predictably, one can see how
the quality of the abstraction increases as the precision increases.

7 Conclusion

Deriving a high-quality abstraction for hybrid systems for the purpose of reach-
ability analysis remains a challenging issue to this day. To attack this issue,
we propose conic abstractions and a method for constructing them for affine
hybrid systems. The core idea lies in deriving a state space partition from a
uniform partition of the derivative space. In particular, for diagonalizable affine
systems, we develop an algorithm for building conic abstractions as DAGs and
for computing invariants on these abstractions. We implement the approach in
a tool and experiments on benchmarks show that our approach is more power-
ful than SpaceExr and PHAVer for the time-unbounded reachability analysis of
diagonalizable systems.
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